Chapter 2. Maxwell equations

Slides:



Advertisements
Similar presentations
首 页 首 页 上一页 下一页 本讲内容 投影法概述三视图形成及其投影规律平面立体三视图、尺寸标注 本讲内容 复习: P25~P31 、 P84~P85 作业: P7, P8, P14[2-32(2) A3 (1:1)]
Advertisements

纺纱学. 2 绪 论 基本要求:了解纺纱系统的类别 重点掌握:棉纺系统的工艺流程 3 一、纺纱原理与设备 纺纱:用物理或机械的方法将纺织纤维纺成纱 线的过程。 纺纱原理:初加工、原料的选配、开松除杂、 混和、梳理、精梳、并合、牵伸、加捻、卷绕等。 纺纱方法:传统纺纱方法、新型纺纱方法。 纺纱设备:开清棉联合机、梳棉机、精梳机、
第十二章 常微分方程 返回. 一、主要内容 基本概念 一阶方程 类 型 1. 直接积分法 2. 可分离变量 3. 齐次方程 4. 可化为齐次 方程 5. 全微分方程 6. 线性方程 类 型 1. 直接积分法 2. 可分离变量 3. 齐次方程 4. 可化为齐次 方程 5. 全微分方程 6. 线性方程.
概率统计( ZYH ) 节目录 2.1 随机变量与分布函数 2.2 离散型随机变量的概率分布 2.3 连续型随机变量的概率分布 第二章 随机变量及其分布.
概率统计( ZYH ) 节目录 3.1 二维随机变量的概率分布 3.2 边缘分布 3.4 随机变量的独立性 第三章 随机向量及其分布 3.3 条件分布.
第四章 犯罪概念与犯罪构成. 第一节 犯罪概念 一、犯罪概念的类型  (一)犯罪的形式概念  (二)犯罪的实质概念  (三)犯罪的混合概念.
HistCite 结果分析示例 罗昭锋. By:SC 可能原因:文献年度过窄,少有相互引用.
平衡态电化学 化学电池 浓差电池 电极过程动力学.
世界的物质性 及其发展规律 第一章 第一章 世界的物质性及其发展规律 第一节 物质世界和实践 第二节 事物的普遍联系与发展 第三节 客观规律性与主观能动性 第二节 事物的普遍联系与发展.
4 第四章 矩阵 学时:  18 学时。 教学手段:  讲授和讨论相结合,学生课堂练习,演练习题与辅导答疑相结合。 基本内容和教学目的:  基本内容: 矩阵的运算,可逆矩阵,初等矩阵及其性质和意义, 分块矩阵。  教学目的:  1 .使学生理解和掌握矩阵等价的相关理论  2 .能熟练地进行矩阵的各种运算.
第二章 质点组力学 质点组:许多(有限或无限)相 互联系的质点组成的系统 研究方法: 1. 分离体法 2. 从整体考虑 把质点的三个定理推广到质点组.
两极异步电动机示意图 (图中气隙磁场形象地 用 N 、 S 来表示) 定子接三相电源上,绕组中流过三相对称电流,气 隙中建立基波旋转磁动势,产生基波旋转磁场,转速 为同步速 : 三相异步电动机的简单工作原理 电动机运行时的基本电磁过程: 这个同步速的气隙磁场切割 转子绕组,产生感应电动势并在 转子绕组中产生相应的电流;
Graphene Double Quantum Dot Transport Property Zhan Su Jan. 12, 2011.
吉林大学远程教育课件 主讲人 : 杨凤杰学 时: 64 ( 第六十二讲 ) 离散数学. 最后,我们构造能识别 A 的 Kleene 闭包 A* 的自动机 M A* =(S A* , I , f A* , s A* , F A* ) , 令 S A* 包括所有的 S A 的状态以及一个 附加的状态 s.
分析化学与无机化学中溶液 pH 值计算的异同比较 谢永生  分析化学是大学化学系的一门基础课,课 时较少,其内容主要是无机物的化学分析。 分析化学是以无机化学作为基础的,我们 都是在已掌握一定的无机化学知识后才学 习分析化学 。所以在分析 化学的学习中会 重复许多无机化学内容,造成学习没有兴.
关于离子加热的探讨. 两个要探讨的基本问题 如何定义等离子体的加热过程 ? 等离子体加热是否必然牵涉到耗散 ?
1 为了更好的揭示随机现象的规律性并 利用数学工具描述其规律, 有必要引入随 机变量来描述随机试验的不同结果 例 电话总机某段时间内接到的电话次数, 可用一个变量 X 来描述 例 检测一件产品可能出现的两个结果, 也可以用一个变量来描述 第五章 随机变量及其分布函数.
11-8. 电解质溶液的 活度和活度系数 电解质是有能力形成可以 自由移动的离子的物质. 理想溶液体系 分子间相互作用 实际溶液体系 ( 非电解质 ) 部分电离学说 (1878 年 ) 弱电解质溶液体系 离子间相互作用 (1923 年 ) 强电解质溶液体系.
论匀强磁场条件下磁通回 路的取法 物理四班 物理四班 林佳宁 (PB ) 林佳宁 (PB ) 指导老师 : 秦敢 指导老师 : 秦敢.
主讲教师:陈殿友 总课时: 124 第八讲 函数的极限. 第一章 机动 目录 上页 下页 返回 结束 § 3 函数的极限 在上一节我们学习数列的极限,数列 {x n } 可看作自变量 为 n 的函数: x n =f(n),n ∈ N +, 所以,数列 {x n } 的极限为 a, 就是 当自变量 n.
吉林大学远程教育课件 主讲人 : 杨凤杰学 时: 64 ( 第三十八讲 ) 离散数学. 第八章 格与布尔代数 §8.1 引 言 在第一章中我们介绍了关于集 合的理论。如果将 ρ ( S )看做 是集合 S 的所有子集组成的集合, 于是, ρ ( S )中两个集合的并 集 A ∪ B ,两个集合的交集.
吉林大学远程教育课件 主讲人 : 杨凤杰学 时: 64 ( 第四十八讲 ) 离散数学. 例 设 S 是一个非空集合, ρ ( s )是 S 的幂集合。 不难证明 :(ρ(S),∩, ∪,ˉ, ,S) 是一个布尔代数。 其中: A∩B 表示 A , B 的交集; A ∪ B 表示 A ,
1 第三章 管理环境 一、外部环境因素 一、外部环境因素 二、内部环境因素 二、内部环境因素 三、当代的管理环境特点 三、当代的管理环境特点.
匀速运动点电荷产生的电磁场 指导老师: 孙老师和助教老师 莫建勇 pb 库仑定律只告诉我们一个静止的点 电荷的成场规律, 那么当点电荷匀 速运动时的成场规律怎样呢 ? 怎样 求解一个匀速运动点电荷对另一 个点电荷的作用力呢?回答是可 以运用狭义相对论的理论来进行 求解. 问题的提出.
线性代数习题课 吉林大学 术洪亮 第一讲 行 列 式 前面我们已经学习了关 于行列式的概念和一些基本 理论,其主要内容可概括为:
吉林大学远程教育课件 主讲人 : 杨凤杰学 时: 64 ( 第二十五讲 ) 离散数学. 定理 群定义中的条件 ( 1 )和( 2 )可以减弱如下: ( 1 ) ’ G 中有一个元素左壹适合 1 · a=a; ( 2 ) ’ 对于任意 a ,有一个元素左逆 a -1 适 合 a -1 ·
第二章 随机变量及其分布 第一节 随机变量及其分布函数 一、随机变量 用数量来表示试验的基本事件 定义 1 设试验 的基本空间为 , ,如果对试验 的每一个基 本事件 ,规定一个实数记作 与之对应,这样就得到一个定义在基本空 间 上的一个单值实函数 ,称变量 为随机变量. 随机变量常用字母 、 、 等表示.或用.
数 学 系 University of Science and Technology of China DEPARTMENT OF MATHEMATICS 第 3 章 曲线拟合的最小二乘法 给出一组离散点,确定一个函数逼近原函数,插值是这样的一种手段。 在实际中,数据不可避免的会有误差,插值函数会将这些误差也包括在内。
吉林大学远程教育课件 主讲人 : 杨凤杰学 时: 64 ( 第三十九讲 ) 离散数学. 例 设 S 是一个集合, ρ ( S )是 S 的幂集合,集合 的交( ∩ ),并(∪)是 ρ ( S )上的两个代数运算, 于是,( ρ ( S ), ∩ ,∪) 是一个格。而由例 知.
电荷传递之处.
量子化学 第四章 角动量与自旋 (Angular momentum and spin) 4.1 动量算符 4.2 角动量阶梯算符方法
化学系 3 班 何萍 物质的分离原理 世世界上任何物质,其存在形式几乎均以混合 物状态存在。分离过程就是将混合物分成两 种或多种性质不同的纯物质的过程。 分分子蒸馏技术是一种特殊的液-液分离技术。
主讲教师:陈殿友 总课时: 124 第十一讲 极限的运算法则. 第一章 二、 极限的四则运算法则 三、 复合函数的极限运算法则 一 、无穷小运算法则 机动 目录 上页 下页 返回 结束 §5 极限运算法则.
在发明中学习 线性代数 概念的引入 李尚志 中国科学技术大学. 随风潜入夜 : 知识的引入 之一、线性方程组的解法 加减消去法  方程的线性组合  原方程组的解是新方程的解 是否有 “ 增根 ” ?  互为线性组合 : 等价变形  初等变换  高斯消去法.
第一节 相图基本知识 1 三元相图的主要特点 (1)是立体图形,主要由曲面构成; (2)可发生四相平衡转变; (3)一、二、三相区为一空间。
量子力学教程 ( 第二版 ) 3.4 连 续 谱 本 征 函 数 的 归 一 化 连续谱本征函数是不能归一化的 一维粒子的动量本征值为的本征函数 ( 平面波 ) 为 可以取 中连续变化的一切实数值. 不难看出,只要则 在量子力学中, 坐标和动量的取值是连续变化 的 ; 角动量的取值是离散的.
导体  电子导体  R   L  i 离子导体  ( 平衡 ) mm   .
吉林大学远程教育课件 主讲人 : 杨凤杰学 时: 64 ( 第五十三讲 ) 离散数学. 定义 设 G= ( V , T , S , P ) 是一个语法结构,由 G 产生的语言 (或者说 G 的语言)是由初始状态 S 演绎出来的所有终止符的集合, 记为 L ( G ) ={w  T *
平衡态电化学 化学电池 浓差电池. 平衡态电化学 膜电势 化学电池浓差电池 电极过程动力学 Electrode Kinetics 极 化 Polarization.
编译原理总结. 基本概念  编译器 、解释器  编译过程 、各过程的功能  编译器在程序执行过程中的作用  编译器的实现途径.
周期信号的傅里叶变换. 典型非周期信号 ( 如指数信号, 矩形信号等 ) 都是满足绝对可 积(或绝对可和)条件的能量信号,其傅里叶变换都存在, 但绝对可积(或绝对可和)条件仅是充分条件, 而不是必 要条件。引入了广义函数的概念,在允许傅里叶变换采用 冲激函数的前提下, 使许多并不满足绝对可积条件的功率.
§8-3 电 场 强 度 一、电场 近代物理证明:电场是一种物质。它具有能量、 动量、质量。 电荷 电场 电荷 电场对外的表现 : 1) 电场中的电荷要受到电场力的作用 ; 2) 电场力可移动电荷作功.
电磁学的一种新的解释 —— 电磁空间 胡凌志 车韶 (物理一班) 内容概要: 1. 想法的由来。 2. 一些概念。 3. 与经典理论的符合。 4. 解释 A-B 效应。 5. 理论的美与缺陷。
初中几何第三册 弦切角 授课人: 董清玲. 弦切角 一、引入新课: 什么是圆心角、圆周角、圆周角定理的内容是什么? 顶点在圆心的角叫圆心角。 顶点在圆上,并且两边都和圆相交的角叫做圆周角。 定理:一条弧所对的圆周角等于它所对的圆心角的一半。 A B′ C B O.
Department of Mathematics 第二章 解析函数 第一节 解析函数的概念 与 C-R 条件 第二节 初等解析函数 第三节 初等多值函数.
氧 族 元 素 第一课时. 氧族元素 包含元素 氧族元素包括 氧 ( 8 O) 、硫 ( 16 S) 、硒 ( Se) 、碲 ( Te) 、钋 ( Po) 等 氧 ( 8 O) 、硫 ( 16 S) 、硒 ( Se) 、碲 ( Te) 、钋 ( Po) 等 氧族元素。 它们的最外层电子、化学性质相似统称为.
首 页 首 页 上一页 下一页 本讲内容本讲内容 视图,剖视图(Ⅰ) 复习: P107 ~ P115 作业: P48(6-2,6-4), P49( 去 6-6) P50, P51(6-13), P52 P50, P51(6-13), P52 P53 (6-18,6-20) P53 (6-18,6-20)
1-4 节习题课 山东省淄博第一中学 物理组 阚方海. 2 、位移公式: 1 、速度公式: v = v 0 +at 匀变速直线运动规律: 4 、平均速度: 匀变速直线运动 矢量式 要规定正方向 统一单位 五个量知道了三 个量,就能求出 其余两个量 3 、位移与速度关系:
《 UML 分析与设计》 交互概述图 授课人:唐一韬. 知 识 图 谱知 识 图 谱知 识 图 谱知 识 图 谱.
Introduction to Automatic Control The Laplace Transform Li Huifeng Tel:
1 、如果 x + 5 > 4 ,那么两边都 可得 x >- 1 2 、在- 3y >- 4 的两边都乘以 7 可得 3 、在不等式 — x≤5 的两边都乘以- 1 可得 4 、将- 7x — 6 < 8 移项可得 。 5 、将 5 + a >- 2 a 移项可得 。 6 、将- 8x < 0.
1 物体转动惯量的测量 南昌大学理学院
§10.2 对偶空间 一、对偶空间与对偶基 二、对偶空间的有关结果 三、例题讲析.
请同学们仔细观察下列两幅图有什么共同特点? 如果两个图形不仅形状相同,而且每组对应点所在的直线 都经过同一点, 那么这样的两个图形叫做位似图形, 这个点叫做位 似中心.
表单自定义 “ 表单自定义 ” 功能是用于制作表单的 工具,用数飞 OA 提供的表单自定义 功能能够快速制作出内容丰富、格 式规范、美观的表单。
力的合成 力的合成 一、力的合成 二、力的平行四边形 上一页下一页 目 录 退 出. 一、力的合成 O. O. 1. 合力与分力 我们常常用 一个力来代替几个力。如果这个 力单独作用在物体上的效果与原 来几个力共同作用在物体上的效 果完全一样,那么,这一个力就 叫做那几个力的合力,而那几个 力就是这个力的分力。
8.1 二元一次方程组. 篮球联赛中,每场比赛都要分出胜负,每队 胜一场得 2 分,负一场得 1 分. 如果某队为了争取 较好名次,想在全部 22 场比赛中得 40 分,那么这 个队胜负场数应分别是多少 ? 引 言引 言 用学过的一元一次方 程能解决此问题吗? 这可是两个 未知数呀?
逻辑设计基础 1 第 7 章 多级与(或)非门电路 逻辑设计基础 多级门电路.
八. 真核生物的转录 ㈠ 特点 ① 转录单元为单顺反子( single cistron ),每 个蛋白质基因都有自身的启动子,从而造成在功能 上相关而又独立的基因之间具有更复杂的调控系统。 ② RNA 聚合酶的高度分工,由 3 种不同的酶催化转 录不同的 RNA 。 ③ 需要基本转录因子与转录调控因子的参与,这.
人 有 悲 欢 离 合, 月有阴晴圆缺。月有阴晴圆缺。 华师大版七年级数学第二册 海口市第十中学 数学组 吴锐.
第 11 章 旋转电机交流绕组的电势和磁势 内 容 提 要内 容 提 要  旋转磁场是交流电机工作的基础。  在交流电机理论中有两种旋转磁场: (1) 机械旋转磁场(二极机械旋转磁场,四极机械旋转磁场) (2) 电气旋转磁场(二极电气旋转磁场,四极电气旋转磁场)二极机械旋转磁场四极机械旋转磁场二极电气旋转磁场四极电气旋转磁场.
3D 仿真机房建模 哈尔滨工业大学 指导教师:吴勃英、张达治 蒋灿、杜科材、魏世银 机房尺寸介绍.
霍尔效应及其应用 汪礼胜 武汉理工大学物理实验中心. 【实验目的】 1 、研究霍尔效应的基本特性 ( 1 )了解霍尔效应实验原理以及有关霍尔器件 对材料要求的知识; ( 2 )测绘霍尔元件的 和 曲线; ( 3 )确定霍尔元件的导电类型,测量其霍尔系 数、载流子浓度以及迁移率。 2 、应用霍尔效应测量磁场(选做)
1 第三章 数列 数列的概念 考点 搜索 ●数列的概念 ●数列通项公式的求解方法 ●用函数的观点理解数列 高考 猜想 以递推数列、新情境下的 数列为载体, 重点考查数列的通 项及性质, 是近年来高考的热点, 也是考题难点之所在.
第二节. 广告牌为什么会被风吹倒? 结构的稳定性: 指结构在负载的作用下 维持其原有平衡状态的能力。 它是结构的重要性质之一。
§9. 恒定电流场 第一章 静电场 恒定电流场. 电流强度  电流:电荷的定向移动  正负电荷反方向运动产生的电磁效应相同 ( 霍尔效应 特例 ) 规定正电荷流动的方向为正方向  电流方向:正方向、反方向  电流强度 ( 电流 ) A 安培 标量 单位时间通过某一截面的电荷.
第二节 财政的基本特征 第二节 财政的基本特征 一、财政分配以政府为主体 二、财政分配一般具有强制性 三、财政分配一般具有无偿性 第一章 财政概论 四、财政分配一般具有非营利性.
目录 上页 下页 返回 结束 二、无界函数反常积分的审敛法 * 第五节 反常积分 无穷限的反常积分 无界函数的反常积分 一、无穷限反常积分的审敛法 反常积分的审敛法  函数 第五章 第五章.
§7.2 估计量的评价标准 上一节我们看到,对于总体 X 的同一个 未知参数,由于采用的估计方法不同,可 能会产生多个不同的估计量.这就提出一 个问题,当总体的一个参数存在不同的估 计量时,究竟采用哪一个好呢?或者说怎 样评价一个估计量的统计性能呢?下面给 出几个常用的评价准则. 一.无偏性.
思考:物质由哪些微粒构成? 思考:物质由哪些微粒构成? 仅仅是只由分子原子构成的吗?有没有其它的 微粒? 仅仅是只由分子原子构成的吗?有没有其它的 微粒? 原子 原子核 ( + ) ( + ) 质子( + ) 中子 核外电子( – ) H 、 C 、 O 、 Na 、 S 这五种元素的原子核外各有.
Presentation transcript:

Chapter 2. Maxwell equations 《电磁波基础及应用》沈建其讲义 Chapter 2. Maxwell equations 1) Displacement current 2) Maxwell equations 3) Boundary conditions of time-dependent electromagnetic field 4) Poynting’s Theorem and Poynting’s Vector 5) The generalized definition of conductors and insulators 6) The Lorentz potential

1) Displacement current 1. Basic principles of time-dependent electric and magnetic fields (1)Gauss’ law in electrostatic field Active field (2)The loop theorem of the electrostatic field Conservative field (保守场)

(3)Gauss’ law for magnetic field Passive field (4)The loop theorem of the magnetostatic field H是涡旋场,因为它的旋度不为零 In the above four equations, D, E, B, H are the fields produced by rest charges or steady current. q is the sum of charges enclosed by Gauss’ surface, and I is algebraic sum of conduction current through the closed loop.

(5)Faraday’s law of electromagnetic induction The relationship between the circulation (环量) of rotational field and the varying magnetic field is: The equation indicates that the varying magnetic field can produce a rotional electric field. Then a new question could be asked: can the varying electric field produce a magnetic field?

2. Displacement current Assume that the capacitor is charged. The charges on plates A and B is +q and –q, respectively. The charge densities are + and -  , respectively. So, one can readily obtain

Due to the current continuity equation On the polar plate S2 surface where JD is a displacement current density

Now Ampere’s law can be rewritten as: The differential form of Ampere’s law can be expressed as and in the loop C obey the right-hand screw rule

3. The relationship between the displacement current and the conduction current (I.e., the connection and difference between… ) (1) They can both produce the magnetic field with the same strength, provided that the displacement current and the conduction current have the same current density. 位移电流与传导电流在产生磁效应上是等价的. (2)They are produced in different ways (They originate from different sources): specifically, the conduction current is caused by the motion of the free charges, while the physical essence of the displacement current is the varying electric field. (3)They will exhibit different effects when passing through the metal conductor: the conduction current can produce the Joule heat while the displacement current cannot.

Example: the conductivity of sea water is 4S/m and its relative dielectric constant is 81, determine the ratio of the displacement current to the conduction current at 1MHz frequency. We assume that the electric field is of the sinusoidal form, The density of the displacement current is The amplitude is given by The density of the conduction current is with the amplitude So,

2) Maxwell equations 1. Maxwell equation set in integral and differential forms The characteristic of electric field (电场特性) Gauss’ law The dielectric flux through a closed surface equals the total charges Q inside the closed surface. Integral form The source of a electric field is the free charge Differential form

(2) The characteristic of magnetic field Continuity of magnetic flux Magnetic field is passive field. There is no free magnetic charge in nature.

(3) The relationship between the varying electric field and the magnetic field General Ampere law The integral of magnetic field strength H along closed loop C equals the sum of conduction current and displacement current The vorticity source of a magnetic field is the conduction current and displacement current.

(4) The relationship between the varying magnetic field and the electric field Faraday’s law of electromagnetic induction Time-dependent magnetic flux can produce electromotive force, the vorticity of an electric field is the time-dependent magnetic field

(需熟记Maxwell方程组,并明确各个方程的物理含义) Maxwell equation set (需熟记Maxwell方程组,并明确各个方程的物理含义) Integral form Differential form

2. Constitutive equation 材料的本构关系(方程)

Magnetic field Electric field 3. The relationship between electric field and magnetic field charge current Magnetic field Electric field motion varying Agitation(电流能激发磁场) Agitation (电荷能激发电场)

3) Boundary conditions of time-dependent electromagnetic field (电磁场边界条件,具体讨论可见谢处方、饶克谨《电磁场与电磁波》pp. 74-79) 1. Boundary condition of magnetic field strength H 1, 1 2, 2 h Rectangle loop in the interface JST is the component of J vertical to l. When h0, the second term in the right equation is 0. Then we have When JS=0 or tangential: 切向的 normal: 法向的

2. Boundary condition of electric field strength E When h0, the right term in the above equation is 0 or 1, 1 2, 2 h Rectangle loop in the interface tangential: 切向的 normal: 法向的

3. Boundary condition of magnetic field strength B or The normal component of the magnetic flux density B in the interface is continuous 4. Boundary condition of dielectric flux density D When S=0 or

5. Summary of the boundary conditions or

Interface of two passive media 无源,交界面上的边界条件 or

Ideal medium 1 and ideal conductor 2 理想介质1与理想导体2 or

4) Poynting’s Theorem and Poynting’s Vector Poynting’s theorem is the mathematical expression for the law of conservation of energy of the electromagnetic fields. Poynting’s vector describes the flow of electromagnetic energy. Poynting定律是电磁能量的守恒定律,其中Poynting矢量的物理意义是:电磁能流密度。

1. Poynting’s theorem From Maxwell equation set, we have Combine the above equations If we assume that the medium is linear, we can obtain

For linear media Ei is impressed electric field, JEi is the power of impressing (external) sources per unit volume. 外电源也产生了一个电场 If we substitute the above expression into the equation we have

Let us multiply this equation by a volume element d and integrate over an arbitrary volume  of the field, we have The power of all the sources inside v Transformed inside v into heat (焦耳热) change rate of the energy localized in the electric and magnetic field inside v Power transferred through S to a region outside S How the power is classified

2. Poynting’s vector W/m2 Energy flow density (能流密度)

Example: in passive free space, the time-dependent electromagnetic field is Determine: (1) magnetic field strength;(2)instantaneous Poynting’s vector;(3) average Poynting’s vector (1)

(2) (3)

5) The generalized definition of conductors and insulators (导体与绝缘体的推广定义) For linear media and time-harmonic (时谐)fields

6) The Lorentz potential Magnetic vector potential and electric field strength in terms of retarded potentials (延迟势) magnetic vector potential (Wb /m) Therefore Scalar potential (V) Electric field strength in terms of retarded potential

If Helmholtz theorem If We get

D’ Alembert’s equation (达兰伯方程) Lorentz condition: For sinusoidal electromagnetic field Lorentz condition:

说明:为什么要引入一个Lorentz条件? 在经典电动力学中,我们可以用E,B,H,D来描述电磁场.与之等价的方案是,可以用上面提到的四维电磁势来代替E,B,H,D.但是我们发现,同一个电场E与磁场B可以对应无穷多套电磁势.也就是说,对于描述电磁场,电磁势是“超定的”,不是“欠定的”.为了把电磁势定下来,我们需要额外的约束.这个约束条件就是Lorentz条件.当然,约束条件是可以随意选的.我们不一定必须选Lorentz条件.有时我们可以选择库仑规范. 无论选择什么约束条件,都是等价的.选择什么约束条件,主要看问题方便而定.如为了照顾到狭义相对论不变性,我们就使用Lorentz条件.

Lorentz potential and gauge transformation (规范变换) 1) Vector and scalar potential can be written as This implies that the term in ( ) can be written as the gradient of a scalar potential V, i.e., At this stage it is convenient to consider only the vacuum case. Then the Maxwell equation 35

can be expressed in terms of the potentials as We have now reduced the set of four Maxwell equations to two equations. But they are still coupled. The uncoupling can be achieved by using the arbitrariness in the definition of the potentials. 36

2) Gauge Transformations, Lorentz Gauge, Coulomb Gauge We choose The transformations 37

* Lorentz Gauge Also, 38

These two equations are equivalent to 4 Maxwell equations. Under the Lorentz condition: In other words, as long as l satisfies the above equation, the Lorentz condition preserves under the gauge transformation. ** Coulomb Gauge The solution is 39

density . This is the origin of the name “Coulomb gauge”. The scalar potential is just the instantaneous Coulomb potential due to the charge density . This is the origin of the name “Coulomb gauge”. The vector potential satisfies The term involving the scalar potential V can, in principle, be calculated from the previous integral. 40

With the help of the continuity equation The Coulomb gauge is often used when no sources are present. Then V=0 41

谈谈电荷守恒和能量守恒 (A)电荷守恒(charge conservation) 什么是电荷守恒? 电荷守恒的数学表达式是什么? 答:古典的“电荷守恒”定律,是指电荷不能凭空创生,也不能凭空消失。自从量子电动力学(quantum electrodynamics)诞生(1940年代)以来,电荷可以创生,也可以湮灭,如一个高能光子(gamma射线光子)可以变成正负电子对,正电子(带正电)与普通电子(带负电)相遇可以变成光子。 正电子质量与普通电子一样,只是带正电。反质子(带负电)与正电子可以构成反氢原子,即反物质。反物质世界好比正物质世界的“镜像世界”(如反物质世界的左、右定义与我们正物质世界的左、右定义相反)。来自反物质世界的友好人士与你握手,你俩瞬间变为光子和各种射线, 真正的“灰飞烟灭”。所以要谨慎交友。

(B)能量守恒(energy conservation)

动量守恒与Lorentz力公式的推导 值得一提的是, Poynting 定律(电磁学能量守恒定律)是一个功率方程(其微分形式为功率密度方程)。能量在时间上的变化率即为功率;能量在空间上的变化率即为力。除了上述功率方程,由Maxwell 方程组亦可以得到力方程,即含有Lorentz 力公式的电磁学动量守恒定律。 由于其比较复杂,一般电动力学和电磁波理论教材都不讲。在文件夹“供学有余力或课时有多时讲授”内有一个“Lorentz力公式的推导.pdf”(文题是:由Maxwell方程推导Lorentz力公式)可供参考。