Improved Migration-Enhanced Epitaxy for Self-Aligned InGaAs Devices Electronic Materials Conference (EMC), 6-25-2009 Mark A. Wistey University of California,

Slides:



Advertisements
Similar presentations
IEEE Device Research Conference, June , Notre Dame
Advertisements

CMOS Fabrication EMT 251.
The state-of-art based GaAs HBT
1 Microelectronics Processing Course - J. Salzman - Jan Microelectronics Processing Oxidation.
High performance 110 nm InGaAs/InP DHBTs in dry-etched in-situ refractory emitter contact technology Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian.
2007 DRC Ultra Low Resistance Ohmic Contacts to InGaAs/InP Uttam Singisetti*, A.M. Crook, E. Lind, J.D. Zimmerman, M. A. Wistey, M.J.W. Rodwell, and A.C.
1 InGaAs/InP DHBTs demonstrating simultaneous f t / f max ~ 460/850 GHz in a refractory emitter process Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian.
Device Research Conference 2011
In-situ and Ex-situ Ohmic Contacts To Heavily Doped p-InGaAs TLM Fabrication by photolithography and liftoff Ir dry etched in SF 6 /Ar with Ni as etch.
1 Uttam Singisetti*, Man Hoi Wong, Jim Speck, and Umesh Mishra ECE and Materials Departments University of California, Santa Barbara, CA 2011 Device Research.
1 Scalable E-mode N-polar GaN MISFET devices and process with self-aligned source/drain regrowth Uttam Singisetti*, Man Hoi Wong, Sansaptak Dasgupta, Nidhi,
NAMBE 2010 Ashish Baraskar, UCSB 1 In-situ Iridium Refractory Ohmic Contacts to p-InGaAs Ashish Baraskar, Vibhor Jain, Evan Lobisser, Brian Thibeault,
DRC mS/  m In 0.53 Ga 0.47 As MOSFET with 5 nm channel and self-aligned epitaxial raised source/drain Uttam Singisetti*, Mark A. Wistey, Greg.
IPRM 2010 Ashish Baraskar 1 High Doping Effects on in-situ Ohmic Contacts to n-InAs Ashish Baraskar, Vibhor Jain, Uttam Singisetti, Brian Thibeault, Arthur.
Ashish Baraskar 1, Mark A. Wistey 3, Evan Lobisser 1, Vibhor Jain 1, Uttam Singisetti 1, Greg Burek 1, Yong Ju Lee 4, Brian Thibeault 1, Arthur Gossard.
2010 Electronic Materials Conference Ashish Baraskar June 23-25, 2010 – Notre Dame, IN 1 In-situ Ohmic Contacts to p-InGaAs Ashish Baraskar, Vibhor Jain,
1 InGaAs/InP DHBTs in a planarized, etch-back technology for base contacts Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian J Thibeault, Mark Rodwell.
1 Interface roughness scattering in ultra-thin GaN channels in N-polar enhancement-mode GaN MISFETs Uttam Singisetti*, Man Hoi Wong, Jim Speck, and Umesh.
1 In 0.53 Ga 0.47 As MOSFETs with 5 nm channel and self-aligned source/drain by MBE regrowth Uttam Singisetti PhD Defense Aug 21, 2009 *
INTEGRATED CIRCUITS Dr. Esam Yosry Lec. #5.
MSE-630 Gallium Arsenide Semiconductors. MSE-630 Overview Compound Semiconductor Materials Interest in GaAs Physical Properties Processing Methods Applications.
ECE685 Nanoelectronics – Semiconductor Devices Lecture given by Qiliang Li.
CMOS Process Integration ECE/ChE 4752: Microelectronics Processing Laboratory Gary S. May March 25, 2004.
CS/EE 6710 CMOS Processing. N-type Transistor + - i electrons Vds +Vgs S G D.
280 GHz f T InP DHBT with 1.2  m 2 base-emitter junction area in MBE Regrown-Emitter Technology Yun Wei*, Dennis W. Scott, Yingda Dong, Arthur C. Gossard,
MOHD YASIR M.Tech. I Semester Electronics Engg. Deptt. ZHCET, AMU.
M.H.Nemati Sabanci University
IC Process Integration
Prospects for High-Aspect-Ratio FinFETs in Low-Power Logic Mark Rodwell, Doron Elias University of California, Santa Barbara 3rd Berkeley Symposium on.
2010 IEEE Device Research Conference, June 21-23, Notre Dame, Indiana
Comparison of Ultra-Thin InAs and InGaAs Quantum Wells and
University of California Santa Barbara Yingda Dong Molecular Beam Epitaxy of Low Resistance Polycrystalline P-Type GaSb Y. Dong, D. Scott, Y. Wei, A.C.
University of California Santa Barbara Yingda Dong Characterization of Contact Resistivity on InAs/GaSb Interface Y. Dong, D. Scott, A.C. Gossard and M.J.
Lecture 23 OUTLINE The MOSFET (cont’d) Drain-induced effects Source/drain structure CMOS technology Reading: Pierret 19.1,19.2; Hu 6.10, 7.3 Optional Reading:
III-V/Ge Channel Engineering for Future CMOS
High Electron Mobility Transistor (HEMT)
III-V MOSFETs: Scaling Laws, Scaling Limits,Fabrication Processes A. D. Carter, G. J. Burek, M. A. Wistey*, B. J. Thibeault, A. Baraskar, U. Singisetti,
Device Research Conference, 2005 Zach Griffith and Mark Rodwell Department of Electrical and Computer Engineering University of California, Santa Barbara,
12 nm-Gate-Length Ultrathin-Body InGaAs/InAs MOSFETs with 8
High speed (207 GHz f  ), Low Thermal Resistance, High Current Density Metamorphic InP/InGaAs/InP DHBTs grown on a GaAs Substrate Y.M. Kim, M. Dahlstrǒm,
Spencer/Ghausi, Introduction to Electronic Circuit Design, 1e, ©2003, Pearson Education, Inc. Chapter 3, slide 1 Introduction to Electronic Circuit Design.
2009 Electronic Materials Conference Ashish Baraskar June 24-26, 2009 – University Park, PA 1 High Doping Effects on In-situ and Ex-situ Ohmic Contacts.
Technology Development for InGaAs/InP-channel MOSFETs
Ultrathin InAs-Channel MOSFETs on Si Substrates Cheng-Ying Huang 1, Xinyu Bao 2, Zhiyuan Ye 2, Sanghoon Lee 1, Hanwei Chiang 1, Haoran Li 1, Varistha Chobpattana.
University of California, Santa Barbara
Improved Regrowth of Self-Aligned Ohmic Contacts for III-V FETs North American Molecular Beam Epitaxy Conference (NAMBE), Mark A. Wistey Now at.
III-V CMOS: Device Design & Process Flows , fax ESSDERC Workshop on Germanium and III-V MOS Technology, Sept.
THz Bipolar Transistor Circuits: Technical Feasibility, Technology Development, Integrated Circuit Results ,
C. Kadow, J.-U. Bae, M. Dahlstrom, M. Rodwell, A. C. Gossard *University of California, Santa Barbara G. Nagy, J. Bergman, B. Brar, G. Sullivan Rockwell.
Device Research Conference 2007 Erik Lind, Adam M. Crook, Zach Griffith, and Mark J.W. Rodwell Department of Electrical and Computer Engineering University.
III-V MOS: Planar and Fin Technologies 2014 MRS Spring Meeting, April 23, San Francisco. M.J.W. Rodwell, UCSB III-V MOS: S. Lee, C.-Y. Huang, D. Elias,
Process Technologies For Sub-100-nm InP HBTs & InGaAs MOSFETs M. A. Wistey*, U. Singisetti, G. J. Burek, B. J. Thibeault, A. Baraskar, E. Lobisser, V.
Uttam Singisetti. , Mark A. Wistey, Greg J. Burek, Ashish K
ISCS 2008 InGaAs MOSFET with self-aligned Source/Drain by MBE regrowth Uttam Singisetti*, Mark A. Wistey, Greg J. Burek, Erdem Arkun, Ashish K. Baraskar,
DOUBLE-GATE DEVICES AND ANALYSIS 발표자 : 이주용
Review of Semiconductor Devices
A Self-Aligned Epitaxial Regrowth Process for Sub-100-nm III-V FETs A. D. Carter, G. J. Burek, M. A. Wistey*, B. J. Thibeault, A. Baraskar, U. Singisetti,
Introduction to GaAs HBT and current technologies
Contact Resistance Modeling and Analysis of HEMT Devices S. H. Park, H
Lower Limits To Specific Contact Resistivity
Device Research Conference, June 19, 2012
Contact Resistance Modeling in HEMT Devices
High Transconductance Surface Channel In0. 53Ga0
Chapter 1 & Chapter 3.
Optional Reading: Pierret 4; Hu 3
Ultra Low Resistance Ohmic Contacts to InGaAs/InP
Lecture 19 OUTLINE The MOS Capacitor (cont’d) The MOSFET:
Record Extrinsic Transconductance (2. 45 mS/μm at VDS = 0
Beyond Si MOSFETs Part 1.
Presentation transcript:

Improved Migration-Enhanced Epitaxy for Self-Aligned InGaAs Devices Electronic Materials Conference (EMC), Mark A. Wistey University of California, Santa Barbara Now at University of Notre Dame U. Singisetti, G. Burek, A. Baraskar, V. Jain, B. Thibault, A. Nelson, E. Arkun, C. Palmstrøm, J. Cagnon, S. Stemmer, A. Gossard, M. Rodwell University of California Santa Barbara P. McIntyre, B. Shin, E. Kim Stanford University S. Bank University of Texas Austin Y.-J. Lee Intel Funding: SRC

2 Wistey, EMC 2009 Outline: Channels for Future CMOS Motivation for Self-Aligned Regrowth Facets, Gaps, Arsenic Flux and MEE Si doping and MEE Scalable III-V MOSFETs The Shape of Things to Come

3 Wistey, EMC 2009 Motivation for Self-Aligned Regrowth 3D nanofabrication Qi Xinag, ECS 2004, AMD AlGaAs GaAs InGaAs GaAs AlGaAs GaAs Blanket layers ? Device properties – Heat transfer – Contacts – Current blocking Air gap VCSEL, Dave Buell thesis Buried het laser, C-W Hu JECS 2007 W.K. Liu et al., J. Crystal Growth v. 311, p (2009) Integration: III-V’s on Si Heteroepitaxy Selective area growth And III-V MOSFETs...

4 Wistey, EMC 2009 Motivation for Regrowth: Scalable III-V FETs Classic III-V FET (details vary): Channel Bottom Barrier InAlAs Barrier Top Barrier or Oxide Gate Low doping Gap SourceDrain Large Rc { Large Area Contacts { Advantages of III-V’s Disadvantages of III-V’s III-V FET with Self-Aligned Regrowth: Channel In(Ga)P Etch Stop Bottom Barrier High-k Gate n+ Regrowth High Velocity Channel Implant: straggle, short channel effects Small R access Small Rc Self-aligned High doping: cm -2 avoids source exhaustion 2D injection avoids source starvation Dopants active as-grown High mobility access regions High barrier Ultrathin 5nm doping layer }

5 Wistey, EMC 2009 Process Flow Prior to Regrowth Pattern gate metal Selective dry etches SiN x or SiO 2 sidewalls Encapsulate gate metals Controlled recess etch (optional) Slow facet planes Not needed for depletion-mode FETs Surface clean UV ozone, 1:10 HCl:water dip & rinse, UHV deox (hydrogen or thermal) Regrowth In(Ga)P etch stop InAlAs barrier InP substrate Metals high-k Channel SiO 2, SiN x Fabrication details: U. Singisetti, PSSC 2009 Rodwell IPRM 2008

6 Wistey, EMC 2009 MBE Regrowth: Bad at any Temperature? Low growth temperature (<400°C): – Smooth in far field – Gap near gate (“shadowing”) – No contact to channel (bad) Gate 200nm Gap Source-Drain Regrowth Source-Drain Regrowth SEMs: Uttam Singisetti Metals Channel SiO 2 high-k Gate Source-Drain Regrowth Source-Drain Regrowth Regrowth: 50nm InGaAs:Si, 5nm InAs:Si. Si=8E19/cm3, 20nm Mo, V/III=35, 0.5 µm/hr. High growth temperature (>490°C): –Selective/preferential epi on InGaAs –No gaps near gate –Rough far field –High resistance

7 Wistey, EMC 2009 Gap-free Regrowth by MEE Migration-Enhanced Epitaxy (MEE) conditions: °C (pyrometer) As flux constant ~ 1x10 -6 Torr: V/III~3, not interrupted. 0.5nm InGaAs:Si pulses (3.7 sec), sec As soak Original Interface InGaAs Regrowth SiO 2 dummy gate SEM: Greg Burek Smaller gapCrosshatching—relaxation? High Si activation (4x10 19 cm -3 ). SEM: Uttam Singisetti InGaAs Regrowth SEM Cross Section SiO 2 dummy gate SEM Side View Top of gate: amorphous InGaAs Wistey, MBE 2008 RHEED: 4x2 ==> 1x2 or 2x4 ==> 4x2 with each pulse. Quasi-selective growth

8 Wistey, EMC C 490C460C SiO2 dummy gate 540C No gaps, but faceting next to gates Gap High Temperature MEE: Smooth & No Gaps Smooth regrowth Note faceting: surface kinetics, not shadowing. In=9.7E-8, Ga=5.1E-8 Torr

Wistey EMC Shadowing and Facet Competition [111] [100] Fast surface diffusion = slow facet growth Slow diffusion = rapid facet growth Shen & Nishinaga, JCG 1995 [111] faster [100] faster Shen JCG 1995 says: Increased As favors [111] growth SiO 2 [111] [100] Slow diffusion = fast growth Fast surface diffusion = slow facet growth SiO 2 Good fill next to gate. But gap persists

Wistey EMC Gate Changes Local Kinetics [100] 2. Local enrichment of III/V ratio 4. Low-angle planes grow instead SiO 2 1. Excess In & Ga don’t stick to SiO2 Diffusion of Group III’s away from gate Solution: Override local enrichment of Group III’s 3. Increased surface mobility

11 Wistey, EMC 2009 Control of Facets by Arsenic Flux SiO 2 W Cr Increasing As flux SEM of single-wafer growth series varying As flux Original Interface InAlAs markers InGaAs InGaAs Experiment: Vary As flux InAlAs marker layers Find best fill near gate 0.5x x x x10 -6 Lowest arsenic flux → “rising tide fill” No gaps near gate or SiO 2 /SiNx Tunable facet competition

12 Wistey, EMC 2009 Scalable InGaAs MOSFETs InGaAs Channel, NID 10 nm InAlAs Setback, NID Semi-insulating InP Substrate 5 nm Al 2 O 3 50 nm W 300 nm SiO 2 Cap SiNx 5 nm InAlAs, Si=8x10 19 cm nm InAlAs buffer 50 nm Cr n ++ regrowth Mo n ++ regrowth 3 nm InGaP Etch Stop, NID Top view SEM Oblique view

13 Wistey, EMC 2009 Scalable InGaAs MOSFETs InGaAs Channel, NID 10 nm InAlAs Setback, NID Semi-insulating InP Substrate 5 nm Al 2 O 3 50 nm W 300 nm SiO 2 Cap SiNx 5 nm InAlAs, Si=8x10 19 cm nm InAlAs buffer 50 nm Cr n ++ regrowth Mo n ++ regrowth 3 nm InGaP Etch Stop, NID Conservative doping design: [Si] = 4x10 13 cm -2 Bulk n = 1x10 13 cm -2 >> Dit Large setback + high doping = Can’t turn off High R source > 350 Ω-µm

14 Technique Shutter Pattern (Arsenic always open) [Si] (cm -3 ) n (cm -3 ) µ (cm 2 V -1 s -1 ) Conventional MBE8x x Si during Group III MEE pulse 8x x Si during As soak8x x Double Si doping16x Wistey, EMC 2009 Silicon Doping in MEE Electron concentration nearly constant Si prefers Group III site even under As-poor conditions Increased mobility by MEE Ga Si Ga Si Ga Si Ga Si

15 Wistey, EMC 2009 Regrown InAs S/D FETs side of gate top of gate Mo S/D metal with N+ InAs underneath 4.7 nm Al 2 0 3, 5×10 12 cm -2 pulse doping In=9.7E-8, Ga=5.1E-8 Torr SEM: Uttam Singisetti Gallium-free = improved selectivity in regrowth InAs regrowth InAs native defects are donors. 1 Reduces surface depletion. Decreased As flux works for InAs too. 1 Bhargava et al, APL 1997

16 Wistey, EMC 2009 InAs Source-Drain Access Resistance* *Wistey et al, NAMBE nm Al 2 0 3, InAs S/D E-FET. TLMs corrected for metal resistance. Slide: Uttam Singisetti, DRC 2009 Total R on = 600 Ω-μm ➡ R s < 300 Ω−μm. g m << 1/R s ~ 3.3 mS/μm -- Not source-limited. ➡ InAs contacts no longer limit MOSFET performance.

17 Wistey, EMC 2009 The Shape of Things to Come Generalized Self-Aligned Regrowth Designs: Channel Back Barrier Substrate Top Barrier Gate n+ Regrowth Self-aligned regrowth can also be used for: GaN HEMTs (with Nidhi in Mishra group, EMC 2009) InGaAs HBTs and HEMTs Selective III-V on Si — remove gaps THz and high speed III-V electronics Back Barrier Substrate Top Barrier Gate Recessed Raised Channel

18 Wistey, EMC 2009 Conclusions Reducing As flux improves filling near gate Self-aligned regrowth: a roadmap for scalable III-V FETs – Provides III-V’s with a salicide equivalent – Can improve GaN and GaAs FETs too Silicon doping impervious to MEE technique InAs regrown contacts improve InGaAs MOSFETs... – Not limited by source 1 mA/µm – Comparable to other III-V FETs... but now scalable

19 Wistey, EMC 2009 Acknowledgements Rodwell & Gossard Groups (UCSB): Uttam Singisetti, Greg Burek, Ashish Baraskar, Vibhor Jain... McIntyre Group (Stanford): Eunji Kim, Byungha Shin, Paul McIntyre Stemmer Group (UCSB): Joël Cagnon, Susanne Stemmer Palmstrøm Group (UCSB): Erdem Arkun, Chris Palmstrøm SRC/GRC funding UCSB Nanofab: Brian Thibeault, NSF