Front-end Digitization for fast Imagers.

Slides:



Advertisements
Similar presentations
TDC130: High performance Time to Digital Converter in 130 nm
Advertisements

Kailua-Kona, Marcel Trimpl, Bonn University Readout Concept for Future Pixel Detectors based on Current Mode Signal Processing Marcel Trimpl.
JLab High Resolution TDC Hall D Electronics Review (7/03) - Ed Jastrzembski.
A. Kluge January 25, Aug 27, 2012 Outline NA62 NA62 Specifications Specifications Architecture Architecture A. Kluge2.
On-Chip Processing for the Wave Union TDC Implemented in FPGA
NxN pixel demonstrator. Time to Digital Converter (2) Tapped delay line –128 cells, 100ps Two hit registers –One per both leading and trailing edge 7.
SKIROC New generation readout chip for ECAL M. Bouchel, J. Fleury, C. de La Taille, G. Martin-Chassard, L. Raux, IN2P3/LAL Orsay J. Lecoq, G. Bohner S.
18/05/2015 Calice meeting Prague Status Report on ADC LPC ILC Group.
Ultrafast 16-channel ADC for NICA-MPD Forward Detectors A.V. Shchipunov Join Institute for Nuclear Research Dubna, Russia
TOF Electronics Qi An Fast Electronics Lab, USTC Sept. 16~17, 2002.
Readout electronics of the NA62 Gigatracker system G. Dellacasa 1, V.Carassiti 3, A. Ceccucci 2, S. Chiozzi 3, E. Cortina 4, A. Cotta Ramusino 3, M. Fiorini.
The GANDALF Multi-Channel Time-to-Digital Converter (TDC)  GANDALF module  TDC concepts  TDC implementation in the FPGA  measurements.
Second generation Front-end chip for H-Cal SiPM readout : SPIROC DESY Hamburg – le 13 février 2007 M. Bouchel, F. Dulucq, J. Fleury, C. de La Taille, G.
Analog to Digital conversion. Introduction  The process of converting an analog signal into an equivalent digital signal is known as Analog to Digital.
S.Manen– IEEE Dresden – Oct A custom 12-bit cyclic ADC for the electromagnetic calorimeter of the International Linear Collider Samuel.
Fully depleted MAPS: Pegasus and MIMOSA 33 Maciej Kachel, Wojciech Duliński PICSEL group, IPHC Strasbourg 1 For low energy X-ray applications.
P. Baron CEA IRFU/SEDI/LDEFACTAR Meeting Santiago de Compostela March 11, A review of AFTER+ chip Its expected requirements At this time, AFTER+
Features of the new Alibava firmware: 1. Universal for laboratory use (readout of stand-alone detector via USB interface) and for the telescope readout.
Pixel Read-Out architectures for the NA62 GigaTracker G. Dellacasa (1), A. Cotta Ramusino(3), M. Fiorini(3), P. Jarron(2) J. Kaplon(2), A. Kluge(2), F.
Valerio Re, Massimo Manghisoni Università di Bergamo and INFN, Pavia, Italy Jim Hoff, Abderrezak Mekkaoui, Raymond Yarema Fermi National Accelerator Laboratory.
Technical Report High Speed CMOS A/D Converter Circuit for Radio Frequency Signal Kyusun Choi Computer Science and Engineering Department The Pennsylvania.
L.Royer – Calice Manchester – Sept A 12-bit cyclic ADC dedicated to the VFE electronics of Si-W Ecal Laurent ROYER, Samuel MANEN LPC Clermont-Ferrand.
COMETH*: a CMOS pixel sensor for a highly miniaturized high-flux radiation monitor Yang ZHOU, Jérôme Baudot, Christine Hu-Guo, Yann Hu, Kimmo Jaaskelainen,
Pixel detector development: sensor
Progress with GaAs Pixel Detectors K.M.Smith University of Glasgow Acknowledgements: RD8 & RD19 (CERN Detector R.&D. collaboration) XIMAGE (Aixtron, I.M.C.,
Click to edit Master subtitle style Presented By Mythreyi Nethi HINP16C.
Technical Report 4 for Pittsburgh Digital Greenhouse High Speed CMOS A/D Converter Circuit for Radio Frequency Signal Kyusun Choi Computer Science and.
Update on works with SiPMs at Pisa Matteo Morrocchi.
1 D. BRETON 1, L.LETERRIER 2, V.TOCUT 1, Ph. VALLERAND 2 (1) LAL ORSAY - France (2) LPC CAEN - France Super Nemo Absolute Time Stamper A high resolution.
C.Beigbeder, D.Breton, M.El Berni, J.Maalmi, V.Tocut – LAL/In2p3/CNRS L.Leterrier, S. Drouet - LPC/In2p3/CNRS P. Vallerand - GANIL/CNRS/CEA SuperB -Collaboration.
Silicon Photomultiplier (SiPM) Readout Application Specific Integrated Chip (ASIC) for Timing Huangshan Chen.
1 Status Report on ADC LPC Clermont-Ferrand Laurent ROYER, Samuel MANEN Calice/Eudet electronic meeting London 2008.
SKIROC status Calice meeting – Kobe – 10/05/2007.
A Low-noise Front-end ASIC design based on TOT technique for Read-out of Micro-Pattern Gas Detectors Huaishen Li, Na Wang, Wei Lai, Xiaoshan Jiang 1 State.
Progress with GaAs Pixel Detectors
End OF Column Circuits – Design Review
DAQ ACQUISITION FOR THE dE/dX DETECTOR
OMEGA3 & COOP The New Pixel Detector of WA97
Valerio Re Università di Bergamo and INFN, Pavia, Italy
DCH FEE STATUS Level 1 Triggered Data Flow FEE Implementation &
A 12-bit low-power ADC for SKIROC
Journées VLSI-FPGA-PCB Juin 2010 Xiaochao Fang
LHC1 & COOP September 1995 Report
VMM ASIC ― Status Report - April 2013 Gianluigi De Geronimo
A micropower readout ASIC for pixelated liquid Ar TPCs
ASIC PMm2 Pierre BARRILLON, Sylvie BLIN, Selma CONFORTI,
implementation of a 42 ps tdc based on fpga target
Jan Soldat, Heidelberg University for the DSSC ASIC design groups
96-channel, 10-bit, 20 MSPS ADC board with Gb Ethernet optical output
From SNATS to SCATS C. Beigbeder1, D. Breton1,F.Dulucq1, L. Leterrier2, J. Maalmi1, V. Tocut1, Ph. Vallerand3 1 : LAL Orsay, France (IN2P3 – CNRS) 2 :
Christophe Beigbeder PID meeting
VLVNT08 Toulone April 2008 Low Power Multi-Dynamics Front-End Architecture for the OM of a Neutrino Underwater Telescope Domenico Lo Presti Istituto Nazionale.
DCH FEE 28 chs DCH prototype FEE &
Ongoing R&D in Orsay/Saclay on ps time measurement: a USB-powered 2-channel 3.2GS/s 12-bit digitizer D.Breton (LAL Orsay), E.Delagnes (CEA/IRFU) Séminaire.
Hellenic Open University
Christophe Beigbeder/ ETD PID meeting
Next generation 3D digital SiPM for precise timing resolution
EUDET – LPC- Clermont VFE Electronics
Phase shifter design for Macro Pixel ASIC
Status of n-XYTER read-out chain at GSI
BESIII EMC electronics
MCP Electronics Time resolution, costs
SKIROC status Calice meeting – Kobe – 10/05/2007.
Stefan Ritt Paul Scherrer Institute, Switzerland
Towards a Fully Digital State-of-the-art Analog SiPM
PID meeting Mechanical implementation Electronics architecture
A new family of pixel detectors for high frame rate X-ray applications Roberto Dinapoli†, Anna Bergamaschi, Beat Henrich, Roland Horisberger, Ian Johnson,
Presented by T. Suomijärvi
TOF read-out for high resolution timing
Phase Frequency Detector &
Presentation transcript:

Front-end Digitization for fast Imagers. Pradeep Kalavakuru, Inge Diehl Matter and Technologies Detector Development Motivation Benefits Intelligent Processing CMOS Scaling Challenge Solutions High Bandwidth Single-Photon Counting DSSC 4096 x 8 bit x 4.5 MHz ≈ 150 Gbps / chip → in-Pixel Memory (burst) Particle Tracking dSiPM 4096 x 1 bit x 3 MHz ≈ 12 Gbps / chip → fast Link (continuous) sensitive → short Connection large Margins in Time & Amplitude → robust early Digitization A D DEPFET Sensor with Signal Compression (DSSC) Digital Silicon Photomultiplier (dSiPM) Single-slope ADC Digital Front-end 15 mm TDC 236 µm Clock Trigger 32 element delay line Vcontrol DLL Ripple Counter 5 bit 7 bit Latch Encoder Phase Frequency Detector & Current Pump D C Q _ Hold Time Hit Counter 2 bit Anode Quench Recharge Serializer AQRC Vqt Vrt Trigger 3.3 V 1.2 V MEMORY 105 µm 64 x 64 Receivers 204 µm 14 mm FE + Control-Logic Offset Trimming 120 µm Comparator Gain Trimming 1.9 mm 2.1 mm 50 µm 57 µm 160 µm 55 µm V / I Reference 64 x Tx & GCC In Pixel Ping-Pong Buffering Ramp Generation with Gain Trimming (6 bit) Delay for Offset Trimming (4 bit) Differential Latches for Time Stamps Features Sampling Rate: 4.5 MHz …10 MHz Dynamic Range: 1 V Process: GF 130 nm CMOS, C4 Bumps Resolution: 8 bit Time stamp: 720 ps …300 ps Noise: 180 µVrms Temp. Stability: ±1% of Gain from -40°C … 40°C Supply: 1.1 V…1.4 V Power Peak: 818 µW Mean: 5 µW (Power Cycling) Global 8-bit Gray-Code Counter Time Stamps distributed over coplanar Wave Guides 16 x 16 In Pixel Active Quenching & Recharging Wired-OR Trigger Hit Counting Adjustable Recharge Start/Hold-Time (Pile-up Rejection) Global Delay-Lock Loop (fine TDC) Ripple Counter (coarse TDC) 32-to-5 bit Encoder Hit-Validation Thresholds (4 per Row, 2 per Matrix) Serial Links Gain → 320 LSB / V Features Process: GF 130 nm CMOS, SAC Bumps Frame Rate: 3 MHz Throughput: 1 Gbps … 1.6 Gbps Trigger Delay: <2 ns TDC Resolution: 12 bit TDC-Bin Width: 77 ps Supplies: 1.2 V, 3.3 V Power Dissipation: 140 mW (total) → 550 µW/Pixel 110 mW (IO) 30 mW (core) Anode Quench Recharge Quenching Time 6 - 260 ns Recharging Time 5 - 160 ns Vth ≈ 1 V σ = 0.16 Results (Room Temperature) Lab-Test Condition Power Cycling (10 Hz @ 200 µs) Storage Depth (800 Frames @ 4.5 MHz) Lab-Test Condition Pixel Enabling Global Test Input Separate TDC 3-MHz Frame Rate Gain ( LSB / V) INL (ADU) DNL (ADU) Automated Gain Trimming Trimming Spread ± 2% σmean = 0.4 LSB No missing Bins σmean = 0.18 LSB Max. Delay: 1.92 ns Uncertainty: 100 ps Bin Width: 77.25 ps ± 11.13 ps DNL: σ = 0.15 LSB INL: σ = 0.33 LSB Petra III (P65 Beam Line) Beam focused onto 8-µm Cu Foil Center of Energy Cu-Kα / Kβ → 8.155 keV Frame Rate → 2.6 MHz (every 2nd Event) With dSiMPl Sensor from MPG-HLL cps Mean-Count Rate → 230 kcts/s/Pixel Counts Mean Noise → ~ 80 e- Noise (e-) Mean Sensitivity → 0.72 keV/Bin Mean Noise peak → 41.86 Mean Signal peak → 50.03 Sensitivity → 1 keV / Bin ENC → ~80 e- 8.17 40 50 60 70 80 ADU 103 101 102 104 105 10 Counts Vbd ≈ 35 V (Breakdown) Vbias = Vbd + Vov (Overvoltage) Threshold of Front-end Inverter ≈ 1 V Noisy Pixel can be disabled Future Aspects On-Chip Power Management 65-nm CMOS On-Chip intelligent Data Processing Fast Links