Presentation is loading. Please wait.

Presentation is loading. Please wait.

Towards a Fully Digital State-of-the-art Analog SiPM

Similar presentations


Presentation on theme: "Towards a Fully Digital State-of-the-art Analog SiPM"— Presentation transcript:

1 Towards a Fully Digital State-of-the-art Analog SiPM
Andrada Muntean1, Esteban Venialgo1, Salvatore Gnecchi2, Carl Jackson2, Edoardo Charbon3 1Delft University of Technology, Delft, The Netherlands, 2SensL, Cork, Ireland 3EPFL, Lausanne, Switzerland

2 Outline Goal and Objectives Architecture Results Conclusions

3 Silicon Photomultipliers
Analog SiPM Digital SiPM

4 Why SiPM? Compact Low bias voltage Insensitive to magnetic fields
Noise characteristics improved through manufacturing processes Low cost Low power consumption Good timing resolution

5 SiPMs (2) Analog SiPM with FAST output Ĩ = ĩ1 +ĩ2 +ĩ3 +ĩ4 + … + ĩn
v1 + C FAST OUTPUT STANDARD OUTPUT

6 Fast Output SensL Source: SensL

7 TDC Goal of this work Analog SiPM with digital output
FAST OUTPUT TDC DIGITAL OUTPUT STANDARD OUTPUT Analog SiPM with digital output Backward-compatible

8 Objectives Reduction of internal parasitics Digital output
Versatility / simplicity Compactness

9 Architecture FAST STANDARD OUTPUT Ring Oscillator MSB START Vref LSB
STOP

10 Multi-Path ring oscillator
Source: A Multi-Path Gated Ring Oscillator TDC With First-Order Noise Shaping (Matthew Z. Straayer, Michael H. Perrott)

11 TDC – doubling RO frequency
Counter Tri-state delay cells Small area No calibration

12 Tri-state three inputs inverter
Quicker transition for each input Faster oscillation period Minimum dimensions Symmetric inverter

13 TDC – phase recycling Count=1 D-FF Φ0 Φ1 Φ2 Φ3 Φ4 Φ5 Φ6 Φ7 Φ8 STOP 8 7
Φ0 Φ1 Φ2 Φ3 Φ4 Φ5 Φ6 Φ7 Φ8 STOP D-FF 1 8 7 6 5 4 3 2 Count=1

14 TDC – phase recycling Count=1 D-FF Φ0 Φ1 Φ2 Φ3 Φ4 Φ5 Φ6 Φ7 Φ8 STOP 8 7
Φ0 Φ1 Φ2 Φ3 Φ4 Φ5 Φ6 Φ7 Φ8 STOP D-FF 1 8 7 6 5 4 3 2 Count=1

15 TDC – phase recycling Count=1 D-FF Φ0 Φ1 Φ2 Φ3 Φ4 Φ5 Φ6 Φ7 Φ8 STOP 8 7
Φ0 Φ1 Φ2 Φ3 Φ4 Φ5 Φ6 Φ7 Φ8 STOP D-FF 1 8 7 6 5 4 3 2 Count=1

16 Advantages & Drawbacks
Simplicity Fast oscillation period with only 9 delay stages Good LSB Smaller area compared to other TDC architectures Complex layout (symmetric delay lines)

17 TDC layout TDC area: 73.67µm x 363.35µm -> 26767µm2 COUNTER VCO
SERIALIZER TDC area: 73.67µm x µm -> 26767µm2

18 Results – TDC performance (no anti-phase)
TT LSB =64.49ps FS LSB = 67.95ps SF LSB = 69.39ps FF LSB = 45.71ps SS LSB = 91.79ps Performance Value LSB 64.49 ps (TT) DNL +/ LSB (TT) INL +/- 1.0 LSB (TT) Worst-case DNL +1.28/-1 LSB Worst-case INL +2.12/-1.66 LSB

19 Results – PVT sensitivity
LSB vs. Temperature LSB vs. Vdd RING

20 System performance summary
Value SiPM 420nm 51 % FF 75 % DCR 50 kcps/mm2 TDC LSB (std/anti-phase) 64.5/35 ps DNL/INL (TT) +/ /-1.0 LSB Resolution 10 bits Supply 3.3 V Input Single-ended Readout clock 40 MHz Power (peak / standby) <9mW / <1mW System Area 3 x 3.3 mm2 Backward-compatible yes 3 mm

21 Conclusions Expected improvement of parasitics in a fully integrated solution Backward-compatibility guaranteed Simplicity and compactness

22 Current and future work
Develop new TDC architectures Low complexity, robust, scalable, versatile Increase timestamping granularity (more/faster TDCs) 3D ICs will enable the combination of SiPM optimized technologies with advanced CMOS low-power processes

23 Acknowledgements The Swiss National Science Foundation
SensL for funding, in part, this research and for providing technology support

24


Download ppt "Towards a Fully Digital State-of-the-art Analog SiPM"

Similar presentations


Ads by Google