Introduction to CMOS Technology

Slides:



Advertisements
Similar presentations
18 July 2001 Work In Progress – Not for Publication 2001 ITRS Front End Process July 18, 2001 San Francisco, CA.
Advertisements

2 December 2003 – ITRS Public Conference Tsinchu, Taiwan ITRS 2003 Front End Process ITRS Conference December 2, 2003 Hsinchu, Taiwan.
PIDS: Poster Session 2002 ITRS Changes and 2003 ITRS Key Issues ITRS Open Meeting Dec. 5, 2002 Tokyo.
1 PIDS 7/1/01 18 July 2001 Work In Progress – Not for Publication P. Zeitzoff Contributors: J. Hutchby, P. Fang, G. Bourianoff, J. Chung, Y. Hokari, J.
DRAFT - NOT FOR PUBLICATION 14 July 2004 – ITRS Summer Conference ITRS FEP Challenges Continued scaling will require the introduction of new materials.
Savas Kaya and Ahmad Al-Ahmadi School of EE&CS Russ College of Eng & Tech Search for Optimum and Scalable COSMOS.
Embedded Systems Design: A Unified Hardware/Software Introduction 1 Chapter 10: IC Technology.
MOS – AK Montreux 18/09/06 Institut dÉlectronique du Sud Advances in 1/f noise modeling: 1/f gate tunneling current noise model of ultrathin Oxide MOSFETs.
Intel’s Low Power Technology
6.1 Transistor Operation 6.2 The Junction FET
Background for Leakage Current
Metal Oxide Semiconductor Field Effect Transistors
Derek Wright Monday, March 7th, 2005
MODULE SYSTEM LOGIC GATE CIRCUIT DQ CMOS Inverter ASIC Full-Custom Semi-Custom Programmable FPGA PLD Cell-Based Gate Arrays General Purpose DRAM & SRAM.
Lateral Asymmetric Channel (LAC) Transistors
Zhang Xintong 11/26/2014 Process technologies for making FinFETs.
VLSI Design CMOS Transistor Theory. EE 447 VLSI Design 3: CMOS Transistor Theory2 Outline Introduction MOS Capacitor nMOS I-V Characteristics pMOS I-V.
EE/MAtE1671 Front-End-Of-Line Variability Considerations EE/MatE 167 David Wahlgren Parent.
Optional Reading: Pierret 4; Hu 3
CMOS Process Integration ECE/ChE 4752: Microelectronics Processing Laboratory Gary S. May March 25, 2004.
Lecture 19 OUTLINE The MOSFET: Structure and operation
ECE 431 Digital Circuit Design Chapter 3 MOS Transistor (MOSFET) (slides 2: key Notes) Lecture given by Qiliang Li 1.
Introduction to Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs) Chapter 7, Anderson and Anderson.
Silicon – On - Insulator (SOI). SOI is a very attractive technology for large volume integrated circuit production and is particularly good for low –
Advanced Process Integration
Introduction to FinFet
Lecture 1b - Review Kishore C Acharya. 2 Building Semiconductor Devices To build semiconductor devices # of carriers present in the semiconductor must.
Szu-Wei Huang, C-V Lab, GIEE of NTU 1 黃 思 維 F Graduate Institute of Electronics Engineering National Taiwan University Advanced Multi-Gate Technologies.
Norhayati Soin 06 KEEE 4426 WEEK 3/2 13/01/2006 KEEE 4426 VLSI WEEK 3 CHAPTER 1 MOS Capacitors (PART 2) CHAPTER 1.
IC Process Integration
Advanced Process Integration
指導教授:劉致為 博士 學生:魏潔瑩 台灣大學電子工程學研究所
1 Fundamentals of Microelectronics  CH1 Why Microelectronics?  CH2 Basic Physics of Semiconductors  CH3 Diode Circuits  CH4 Physics of Bipolar Transistors.
Network for Computational Nanotechnology (NCN) UC Berkeley, Univ.of Illinois, Norfolk State, Northwestern, Purdue, UTEP First-Time User Guide to MOSFET.
NMOS PMOS. K-Map of NAND gate CMOS Realization of NAND gate.
ECE340 ELECTRONICS I MOSFET TRANSISTORS AND AMPLIFIERS.
ECE442: Digital ElectronicsCSUN, Spring-2010-Zahid MOS Transistor ECE442: Digital Electronics.
1 Introduction to CMOS Technology. 2 Outline p MOSFET Basics –Ideal MOSFET physics –Main parameters : threshold, leakage and speed –What MOSFET for what.
EE141 © Digital Integrated Circuits 2nd Devices 1 Goal of this lecture  Present understanding of device operation  nMOS/pMOS as switches  How to design.
HO #3: ELEN Review MOS TransistorsPage 1S. Saha Long Channel MOS Transistors The theory developed for MOS capacitor (HO #2) can be directly extended.
MOS Transistor Other handouts Project Description Other “assignments”
The MOS Transistor Polysilicon Aluminum. The NMOS Transistor Cross Section n areas have been doped with donor ions (arsenic) of concentration N D - electrons.
CHAPTER 6: MOSFET & RELATED DEVICES CHAPTER 6: MOSFET & RELATED DEVICES Part 2.
UTB SOI for LER/RDF EECS Min Hee Cho. Outline  Introduction  LER (Line Edge Roughness)  RDF (Random Dopant Fluctuation)  Variation  Solution – UTB.
CMOS VLSI Design 4th Ed. EEL 6167: VLSI Design Wujie Wen, Assistant Professor Department of ECE Lecture 3A: CMOs Transistor Theory Slides adapted from.
Guided by: Prof.J.D.PRADHAN Submitted By: K.Anurag Regn no:
Lecture 18 OUTLINE The MOS Capacitor (cont’d) Effect of oxide charges
Revision CHAPTER 6.
VLSI design Short channel Effects in Deep Submicron CMOS
Introduction to Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs) Chapter 7, Anderson and Anderson.
Lecture 22 OUTLINE The MOSFET (cont’d) MOSFET scaling
6.3.3 Short Channel Effects When the channel length is small (less than 1m), high field effect must be considered. For Si, a better approximation of field-dependent.
Other FET’s and Optoelectronic Devices
INTRODUCTION: MD. SHAFIQUL ISLAM ROLL: REGI:
EMT362: Microelectronic Fabrication CMOS ISOLATION TECHNOLOGY Part 1
PHYSICS OF SEMICONDUCTOR DEVICES II
ECE574 – Lecture 3 Page 1 MA/JT 1/14/03 MOS structure MOS: Metal-oxide-semiconductor –Gate: metal (or polysilicon) –Oxide: silicon dioxide, grown on substrate.
Lecture 19 OUTLINE The MOSFET: Structure and operation
Optional Reading: Pierret 4; Hu 3
Lecture #25 OUTLINE Device isolation methods Electrical contacts to Si
MOS Capacitor Basics Metal SiO2
Lecture 18 OUTLINE The MOS Capacitor (cont’d) Effect of oxide charges
Lecture 19 OUTLINE The MOS Capacitor (cont’d) The MOSFET:
EMT 182 Analog Electronics I
Lecture 22 OUTLINE The MOSFET (cont’d) MOSFET scaling
Lecture 19 OUTLINE The MOS Capacitor (cont’d) The MOSFET:
Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Sung June Kim Chapter 18. NONIDEAL MOS Sung June Kim
Beyond Si MOSFETs Part IV.
Beyond Si MOSFETs Part 1.
Presentation transcript:

Introduction to CMOS Technology C. Fenouillet-Beranger SOI Devices Engineer, CEA/LETI & STMicroelectronics, Crolles

Outline MOSFET Basics The Real World Technological Solution ? Ideal MOSFET physics Main parameters : threshold, leakage and speed What MOSFET for what application ? Scaling theory and good design rules of CMOS Devices The Real World Threshold voltage control limitations Gate oxide leakage and capacitance scaling Technological Solution ? Gate alternative : High-K and Metal Gate Channel engineering : Strained-Si Alternative devices and substrates Basic logic functions

MOSFET Basics

CMOS technology applications

Different scales inside a chip 2x2 cm² Silicon channel NiSi Source Drain Gate 10x10 mm² 4x4 µm² 500x500 nm²

Making a Switch with Metal, Oxide and Silicon Si (p) n+ Vg = S D C Vd Energy Barrier x Carrier reservoir Source Drain E Energy Barrier x Carrier reservoir Source Drain

What is an ideal MOS Transistor ? A MOS capacitor is modulating the transport between two carrier reservoir VS=0V VD>0V VG=0V S D G + + + + + + - - - - - - - VG>0V IDS Canal vide : courant nul Canal rempli : courant non nul A B TMOS bloqué TMOS passant OFF-STATE ON-STATE MOS capacitance : Field Effect  MOSFET

n-type & p-type MOSFETs Metal Oxide Si (p) n+ Vg>0 Vd>0 Metal Oxide Vg<0 p+ Si (n) Vd<0 nMOSFET Electron conduction pMOSFET Hole conduction

MOSFET morphology Gate (Poly-Si) Si Métal Oxyde Semi- conducteur Source Drain

Basic Physics of MOSFET Log(Idrain) MOSFET switch Ideal switch 3 main parameters Threshold Voltage Ion (=speed) Ioff (=stand-by power) ON state Current OFF state Current OFF State Current (Thermal) Threshold (Vth) Vgate

MOSFET Physics - - - - d VG=VD VG=0 VD VD VS VS L L VB VB VD Tox N P - + VG=0 VD VS VB L Tox « Off State» N P + - nMOSFET L WS/C WD/C source drain grille canal BC N P d - L WS/C WD/C source drain gate channel BC P N VD -

Threshold Voltage (Vth) WS/C WD/C source drain gate channel BC P N VD - Channel Doping Gate Material Oxide Thickness

On State Current (Ion) Gate Vg-Vth Vg-Vth-VDS Lgate Source Drain L

Off – State Current (Ioff) - VD>0 VG1<Vth VG1<VG2<Vth Ithermique Idiffusion Log Idrain Vgate 1/S Vth + dec Ioff Modulation of barrier heigth by Capacitive coupling S should be as small as possible

The Static Leakage Components i) Gate leakage (oxide thickness dependance) Ioff = IS + IG + IB ii) Channel Leakage (Vth and S dependant) iii) Junction leakage (doping dependance)

Different Applications : Some typical numbers Computers Low Vth Hifi – TV Power Dissipation High Vth Mobile Phones Operation Speed

CMOS Scaling CMOS120 CMOS090 CMOS065 CMOS045 CMOS032

Scaling Theory: Moore’s law Gordon Moore, a co-founder of Intel said in 1965: “Component count per unit area doubles every two years” Last 40 years : technological advances achieved mainly by reducing transistors size - However current trend of miniaturization causes undesired effects degrading the electrical parameters and transistor performance In reality: µ decreases Tox levels-off Off current increases as transistor size is reduced

Ideal MOSFET Basics summary Threshold Voltage : Determines the gate voltage transition Vth between Off-state and On-state regimes Vth depends (at the 1st order) on the channel doping and gate electrode material On-State : MOS gate capacitance lowers channel barrier electrons(holes) flow from Source to Drain  Ion current Carrier transit time is Cgate*Vgate / Ion  the higher Ion the faster the device Off-State : MOS gate capacitance potential = 0 electrons(holes) flow from Source to Drain due to Thermionic current  Ioff current Static Power dissipation is Pstat = VDS * Ioff

Part 2. The Real World

Vth Control : Short Channel Effects Zone de charge d’espace ZCE Log Idrain Vgate BC DIBL Vth2 SCE Vth1 Vth SCE=Short Channel Effect SCE DIBL DIBL=Drain Induced Barrier Lowering VDS

MOSFET Typical Lenghts and Ratios Lgate,phys Tox gate source drain Tdep Xj Lel Good design rules of MOSFET architecture : X T 1 T V j 1 ox dep 1 th 1 » » ; ; » » L 3 L 3040 L 3 V 5 el el el dd

Scaling rules (MASTAR Model) VTH(short Mosfet)=VTH(long)-SCE-DIBL æ 2 ö X e ç ÷ T T j dep Si ox SCE = 0.8 1 + ç ÷ V bi e 2 ç ÷ L L ox L el el è el ø æ 2 ö X e ç ÷ T T j ox dep = Si DIBL 0.8 + ç 1 ÷ V ds e 2 ç ÷ L L ox L el el è el ø 1 Wel I = m C (V -Vth) V dsat eff ox g dsat 2 Lel T. Skotnicki et al. IEEE EDL, March’88 & IEDM’1994

Why is it so difficult to get a « Good Scaling » ? Oxide Scaling Junction Scaling Lgate,phys drain gate Tdep source Lel Xj Doping increase Subthreshold control

Tox/Lel ratio : Gate Oxide Scaling Lgate,phys drain Poly-Si gate Tdep source Lel Xj zz zz

The Gate-Poly Silicon Depletion 2 4 6 8 10 12 14 16 18 20 30 40 CMOS relevant Tox , A NMOS ( Npoly =1e20cm - 3) Tp (EOT) @ 1.8V 1.3V 1.0V 0.7V 0.5V 0.35V 0.25V EOT of polydepletion Vdd scaled with Tox N+ P+ Tdeppoly = 0.4nm 0.6nm Ref.: E. Josse et al., IEDM’99

Quantization Effects in Inversion Layer C-Y. Hu et al., IEEE EDL, June 1996 ~150mV

Impact on Good Design Rule Reality Good design Rule Tox,eff = Tox + 8A

The problem of Gate Leakage 2 Poly-Si Si Ef Ev Ec Gate N+ SiO2 Substrate Si P Wpd 2A reduction in Tox  ~ 1 dec increase in gate leakage

Impact of Gate Leakage on Circuits 1 1 Igoff IgOn Ioffcanal In Static Mode, two gate leakages: IgOff & IgOn : increase of Ioff If Tox , Ig , Power

Vth/Vdd Ratio If Vdd drops, just decrease the Vth too keep a good Ion. But … V gs th Log(I DS ) I off S degrades at smaller L !

What Did We Learn ? Controlling Vth (Ioff) Increasing Doping Junc. Leak. Ioff (power) increase Scaling Jonctions Rs increase Ion (speed) reduction Scaling Tox Gate leakage Higher Ioff Darkspace Polydepletion Limited Scaling Ion reduction Reducing Vdd (power) Ion reduction

Technological Boosters to recover a Healthy Scaling

What can we do to retrieve a Healthy Scaling ? Oxide Scaling Junction Scaling Silicon channel NiSi Source Drain Gate Low RSD for lower Xj Better Contact Resistance Less Gate Lekage No Poly Depletion Subthreshold control Vs Overdrive Doping increase Better Ion at the same overdrive Better Subthreshold Slope DIBL-Free Architecture

Mobility Enhancement

Ion Enhancement by materials Transistor Architecture Material Properties Velocity saturation regime Velocity Carrier velocity under electric field E in the linear regime: v = µ E µ Ecritical Efield

Mobility In Silicon m q µ t = E 2 m E v = * Shockwave from lattice vibration, or impurities, or gate oxide rugosity every t seconds Small m* : ligth electrons or holes carrier, mass m* 2. High t (less possible collision) * m q µ t = Effective mass of carrier Linked to valence/conduction bands

Who are the guys responsible for Ion ? Silicon Band Structure ml mt (x)100 (y) 010 (z) 001 6 equivalent types of electrons are involved in conduction regime of nMOS 2 types of holes are involved in conduction regime of pMOS : heavy and light

What happens in Strained-Si ? Splitting less intervalley phonon scattering  Splitting Sub-band Carrier Redistribution Band structure deformation

Redistribution in subbands and scattering reduction Fermi-Dirac Unstrained Si >80 % in HH Strained-Si < 1 % in HH E

Is Stress the Only Way to Enhance Mobility ? Carrier effective mass can depend on cristal direction ! For Electron iso-energy are ellipsoidal  average dependance does not depend on Si direction for standard (100) substrate (not true in other direction) For Hole : extremely high anisotopy of mass !! Heavy Mass Holes with the same energy Cristal Direction (3D) Light Mass

Choosing the right Si-orientation for Holes Standard (100) wafer Standard (100) wafer Light Mass along transport Rotated <100> channel 45° Rotation Heavy Mass along transport Standard <110> channel

Optimum Cristal Orientations Inversion layer mobility depends on the surface orientations and current flow directions For holes, mobility is 2.5x higher on (110) surface compared to standard wafer with (100) orientation For electrons, mobility is highest on (100) substrates nMOS pMOS From M.Yang et al., IEDM 2004

Hybrid integration To fully take advantage of the carrier mobility dependence on surface orientation, fabrication of CMOS on hybrid substrates has been demonstrated The hybrid substrate is obtained using a layer transfer technique in which the bonded wafer and the handle wafer have different crystal orientation. An additional photo step is used to etch through the SOI and BOX and expose the surface of the handle wafer to perform SEG Issues : limited scalability of bulk devices and increased process complexity [M. Yang et al., IEDM 2003]

Mobility Enhancement Techniques Substrate-based Process-based Induced Stess BULK SSOI SixGe1-x Based Bulk Tensile bi-axial stress nMOS+pMOS Si SiGe box Cristal Orientation In-plane Out of plane Mod.Orientation Si Channel pMOS Natural mobility boost Rotated substrate Liners CESL SMT nMOS Tensile pMOS Compressive SiGe SEG STI SACVD Tensile Bi-axial nMOS+pMOS SiGe SD Compressive pMOS

Strain and mobility Low field mobility Electrons Holes Biaxial tensile + Biaxial compressive - Uniaxial tensile (along Lg) Uniaxial compressive (along Lg) Biaxial tensile Uniaxial compressive (along Lg) Uniaxial tensile (along Lg) [F. Payet, L2MP PhD, 2006]

Uniaxial Stress By Stressed-Liner Strained MOSFET (Lg=30nm) by CESL CESL Tensile 2D mecanical Simulations Impact on nMOSFETs performances Tension (F.Bœuf et al., IEDM 2004 , SSDM 2004)

Hole Mobility enhancement using Rotated Substrates 45° <100> <110> Current Flow

Uniaxial Stress using SiGe S/D <110> unstrained T.Korman +15% Courtesy, F.Payet

Gate Capacitance Scaling : High-K dielectrics  

Figthing against Gate Leakage Reducing Tunneling… Increasing Tox ! But without reduction of Cox ! Increasing permitivity  HIGH K materials Ef Ev Ec Gate N+ SiO2 Substrate Si P Wpd Leakage issue Polydepletion issue Replacing Poly-Si by Metal

Context Figthing against Gate Leakage Down to 90nm gate length, N+ and P+ polysilicon gate was used for CMOS integration compatible with oxide or oxynitride gate dielectric. Due to aggressive scaling of the gate dielectric, the gate leakage is becoming unacceptably high (>Ioff), requiring the use of high-k dielectric Due to the incompatibility of polysilicon gate with high-k dielectric (Fermi pinning, large Vt, mobility degradation) and the need to boost performance (elimination of polydepletion, boron penetration,…), metal gate electrodes will likely be needed For bulk technology, two metals with WFs close to the bandgap edges are needed (high channel doping required to control SCE). For FDSOI or double gate devices, WFs within 250meV from midgap are preferred, requiring more complex integration Two integration approaches are considered: gate first and gate last.

High-k dielectric Jg ON (A/Cm²) CET (A) For EOTs below 20Å, gate leakage current becomes higher than off-state leakage current. High-k dielectric High-k (HfO2, ZrO2, Hf-based or Zr-based, LaO2, Al2O3,… ALCVD or MOCVD deposition Pre-deposition clean and post deposition anneals affect the quality of high-k Large Vt: Fermi pinning at the poly-Si/ Metal oxide interface but occurs also metal gate electrodes 0,00001 0,0001 0,001 0,01 0,1 1 10 100 17 19 21 23 25 27 CET (A) Jg ON (A/Cm²) MG/HfO2 2 Dec FD SOI nMOS, Vg = 1.1V Poly-Si/SiON 1 Dec MG/Hf SiON MG/SiON MASTAR Exp data. C. Fenouillet et al IEDM 2007 Compatibility of polysilicon gate with high-k is unlikely ! High-K  At an equivalent CET of SiON dielectric, the gate leakage current is reduced by more than 2 decades

High-k Dielectric : Issues Mobility degradation - Many publications have reported mobility degradation using high-k dielectrics. Possible cause is coupling of soft optical phonons in high-k with inversion channel charge carrier Vt instabilities and reliability and noise issues Large k and large dielectric thickness result in fringing field (FIBL) and loss of control of the channel by the gate B. Tavel et al, PhD Thesis 2002

Gate Capacitance Scaling : Metal Gates  

Choosing The « Good Metal » nMOS Gate poly-Si N+ Ec Metal Gate « N+like » Mid-gap Gate 1.12V Ev pMOS Gate poly-Si P+ Metal Gate « P+like »

Metal gate integration The use of metal gate suppress: the polysilicon depletion : a reduced CET of 3-5Å for performance improvement and suppress the boron penetration problem Two approaches have been proposed: gate first or gate last Gate first approach requires to take care of FE contamination tool, metal etching and to the high temperature anneal Gate last approach (replacement gate): dummy gate removal and replacement, gate dielectric integrity has to be kept But for some applications CMOS requires 2 different metal gates in order to separate WFs for NMOS and PMOS devices (Dual metal gate integration)

Why is Metal Workfunction so important ? Regular Poly-gate n+/p+ Mid-gap Metal Gate Dual n+/p+ Metal Gate Log Id Log Id Log Id +0.5V +0.5V Vth,p Vth,p Vth,p Vth,n Vth,n Vth,n Vg Vg Vg +25% Polydep reduction Id Id Id Ion,n Ion,p Ion,n Ion,p Ion,p Ion,n Vg Vg Vg Vdd Vdd Vdd Vdd Vdd Vdd

Metal gate interest for FDSOI Why midgap metal gate ? Midgap electrode with undoped channel : symmetrical Vth for NMOS and PMOS for high Vth applications With Band edge gate electrodes (as poly-Si), FDSOI requires very high channel doping > 8e18 at/cm3 for HVT -> Variability degradation Why high-k ?

Device Architecture

Device Architecture GP FD SON PD SOI Bulk FD SOI Xj Tdep DG (Delta, FinFET, SON, Vertical, TriGate, Omega, etc., etc. PD SOI FD SOI Scalability ? Scalability as BULK Scalability may be better or worse (GP,BOX) Scalability very much improved Scalability much improved if GP REF.:T. Skotnicki, invited paper ESSDERC 2000, pp. 19-33, edit. Frontier Group

Layout and basic functions

Logic Applications Basic Functions Silicon Complex Function Layout inverter NAND SRAM Basic Functions Silicon Complex Function (MP4 Decoder, µProc, Motion Detector, TVDH …)

Layout of the transistor Gate Source Drain Metal 1 Contact Gate isolation Si=Active Source Drain Metal Oxide Si (p) n+ Vg>0 Vd>0

Design rules Poly-active W Poly-contact Active-contact Diam. contact Design Rule Manual (DRM) Document that gives the design rules for a technology node Gives the minium dimensions for each level Give the minium distance between two levels The design rules give the maximum density achievable for a technology node Poly-active W Poly-contact Active-contact Diam. contact Si=Active Lpoly

Circuit cross-section Interconnect Transistors

FEOL & BEOL Metal 6 Metal 5 Metal 4 Metal 3 Metal 2 Metal 1 MOSFETs FEOL=Front End of Line BEOL = Back End Of Line Metal 1 Metal 2 Metal 3 Metal 4 Metal 5 Metal 6 MOSFETs