Lars Reuen, 7th Conference on Position Sensitive Devices, Liverpool

Slides:



Advertisements
Similar presentations
Radiation damage in silicon sensors
Advertisements

Kailua-Kona, Marcel Trimpl, Bonn University Readout Concept for Future Pixel Detectors based on Current Mode Signal Processing Marcel Trimpl.
Development of an Active Pixel Sensor Vertex Detector H. Matis, F. Bieser, G. Rai, F. Retiere, S. Wurzel, H. Wieman, E. Yamamato, LBNL S. Kleinfelder,
R. H. Richter et al - VERTEX 2002 Kailua-Kona, DEPFET sensors for a LC vertex detector (1) »DEP(leted)F(ield)E(ffect)T(ransistor) operation.
Standalone VeloPix Simulation Jianchun Wang 4/30/10.
SOIPD Status e prospective for 2012 The SOImager2 is a monolithic pixel sensor produced by OKI in the 0.20 µm Fully Depleted- Silicon On Insulator (FD-SOI)
The DEPFET Active Pixel Sensor as Vertex Detector for the ILC
28 June 2002Santa Cruz LC Retreat M. Breidenbach1 SD – Silicon Detector EM Calorimetry.
ATLAS SCT module performance: beam test results José E. García.
Semiconductor detectors
Presentation at the PRC review, , DESY Status of DEPFET pixel detectors for ILC Peter Fischer for the DEPFET collaboration Bonn University:R.
Tobias Haas DESY 7 November 2006 A Pixel Telescope for Detector R&D for an ILC Introduction: EUDET Introduction: EUDET Pixel Telescope Pixel Telescope.
Hamburg, Marcel Trimpl, Bonn University A DEPFET pixel-based Vertexdetector for TESLA 55. PRC -MeetingHamburg, Mai 2003 M. Trimpl University.
DEPFET Electronics Ivan Peric, Mannheim University.
Monolithic Pixels R&D at LBNL Devis Contarato Lawrence Berkeley National Laboratory International Linear Collider Workshop, LCWS 2007 DESY Hamburg, May.
2. Super KEKB Meeting, DEPFET Electronics DEPFET Readout and Control Electronics Ivan Peric, Peter Fischer, Christian Kreidl Heidelberg University.
ECFA ILC Workshop, November 2005, ViennaLadislav Andricek, MPI für Physik, HLL DEPFET Project Status - in Summary Technology development thinning technology.
07 October 2004 Hayet KEBBATI -1- Data Flow Reduction and Signal Sparsification in MAPS Hayet KEBBATI (GSI/IReS)
1 Digital Active Pixel Array (DAPA) for Vertex and Tracking Silicon Systems PROJECT G.Bashindzhagyan 1, N.Korotkova 1, R.Roeder 2, Chr.Schmidt 3, N.Sinev.
ILC VXD Review, Fermilab, October 2007 Ariane Frey, MPI für Physik DEPFET Vertex Detector Simulation and Physics Performance Ariane Frey for the DEPFET.
JRA1 Status: PCMAG, Sensors and Infrastructure Tobias Haas DESY/F1 11 September 2006.
Vertex05, 8/11/05Jaap Velthuis, Bonn University DEPFET Status DEPFET Principle Readout modes Projects: –XEUS –WIMS –ILC ILC Testbeam results Summary &
Carlos Mariñas, IFIC, CSIC-UVEG DEPFET Technology for future colliders Carlos Mariñas IFIC-Valencia (Spain) 1 LCPS09, Ambleside.
Fully depleted MAPS: Pegasus and MIMOSA 33 Maciej Kachel, Wojciech Duliński PICSEL group, IPHC Strasbourg 1 For low energy X-ray applications.
CEA DSM Irfu 20 th october 2008 EuDet Annual Meeting Marie GELIN on behalf of IRFU – Saclay and IPHC - Strasbourg Zero Suppressed Digital Chip sensor for.
Fine Pixel CCD for ILC Vertex Detector ‘08 7/31 Y. Takubo (Tohoku U.) for ILC-FPCCD vertex group ILC vertex detector Fine Pixel CCD (FPCCD) Test-sample.
ILC VXD Review, Fermilab, October 23, 2007 Hans-Günther Moser, MPI für Physik DEPFET Devices Hans-Gunther Moser for the DEPFET Collaboration (
Apollo Go, NCU Taiwan BES III Luminosity Monitor Apollo Go National Central University, Taiwan September 16, 2002.
Technology Overview or Challenges of Future High Energy Particle Detection Tomasz Hemperek
LCWS08, Chicago, November 2008 Ladislav Andricek, MPI fuer Physik, HLL 1 DEPFET Active Pixel Sensors - Status and Plans - Ladislav Andricek for the DEPFET.
Fig. 1: Cross section of a circular DEPMOS- FET pixel cell. Charges collected in the “in- ternal gate’ modulate the transistor current. DEPMOSFET team,
The development of the readout ASIC for the pair-monitor with SOI technology ~irradiation test~ Yutaro Sato Tohoku Univ. 29 th Mar  Introduction.
Radiation hardness of Monolithic Active Pixel Sensors (MAPS)
Prague, Marcel Trimpl, Bonn University DEPFET-Readout Concept for TESLA based on Current Mode Signal Processing Markus Schumacher on behalf.
FEE 2006, Perugia, Marcel Trimpl, University of Bonn VIth Workshop on Front End Electronics Perugia, Mai 2006 M.Trimpl DEPFET – collaboration:
LHCb Vertex Detector and Beetle Chip
The Belle II DEPFET Pixel Detector
SuperKEKB 3nd open meeting July 7-9, 2009 Hans-Günther Moser MPI für Physik Sensor and ASIC R&D Sensor Prototype Production: running, ASICs: Switcher,
TRACKING AND VERTEXING SUMMARY Suyong Choi Korea University.
Design and Technology of DEPFET Active Pixel Sensors for Future e+e- Linear Collider Experiments G. Lutz a, L. Andricek a, P. Fischer b, K. Heinzinger.
Position Sensitive Detector Conference, September 2005, LiverpoolGerhard Lutz 1 (Semiconductor) Pixel Detectors for charged particles (and other applications)
Timepix test-beam results and Sensor Production Status Mathieu Benoit, PH-LCD.
Particle Physics School Colloquium, May C. Koffmane, MPI für Physik, HLL, TU Berlin  DEPFETs at ILC and Belle II  Module Concept  results with.
Highlights from the VTX session Marc Winter & Massimo Caccia R&D reports: – DEPFET (M. Trimpl) – CCD (S. Hillert) – UK-CMOS (J.Velthuis) – Continental-CMOS.
1 Characterization of Pilot Run Modules for the Belle II Pixel Detector Felix Müller Max-Planck-Institut für Physik IMPRS Young Scientist Workshop Ringberg.
Low Mass, Radiation Hard Vertex Detectors R. Lipton, Fermilab Future experiments will require pixelated vertex detectors with radiation hardness superior.
Pixel Sensors for the Mu3e Detector Dirk Wiedner on behalf of Mu3e February Dirk Wiedner PSI 2/15.
TILC08, Sendai, March DEPFET Active Pixel Sensors for the ILC Marcel Vos for the DEPFET Collaboration (
H.-G. Moser Max-Planck-Institut for Physics, Munich Vertex07 Lake Placid, NY 9/25/2007 DEPFET Active Pixel Detectors H.-G. Moser on behalf of the DEPFET.
Clear Performance and Demonstration of a novel Clear Concept for DEPFET Active Pixel Sensors Stefan Rummel Max-Planck-Institut für Physik – Halbleiterlabor.
1 Test of Electrical Multi-Chip Module for Belle II Pixel Detector DPG-Frühjahrstagung der Teilchenphysik, Wuppertal 2015, T43.1 Belle II Experiment DEPFET.
1 First large DEPFET pixel modules for the Belle II Pixel Detector Felix Müller Max-Planck-Institut für Physik DPG-Frühjahrstagung der Teilchenphysik,
Testsystems PXD6 - testing plans overview - by Jelena NINKOVIC Hybrid Boards for PXD6 - by Christian KOFFMANE Source measurements on DEPFET matrices using.
Testing PXD6 - testing plans
 Silicon Vertex Detector Upgrade for the Belle II Experiment
The DEPFET for the ILC Vertex Detector
CMOS pixel sensors & PLUME operation principles
First Testbeam results
Silicon Pixel Detector for the PHENIX experiment at the BNL RHIC
DEPFET Active Pixel Sensors (for the ILC)
Silicon Lab Bonn Physikalisches Institut Universität Bonn
Integration and alignment of ATLAS SCT
The Belle II Vertex Pixel Detector (PXD)
Rita De Masi IPHC-Strasbourg on behalf of the IPHC-IRFU collaboration
Test Beam Measurements october – november, 2016
Yasuhiro Sugimoto KEK 17 R&D status of FPCCD VTX Yasuhiro Sugimoto KEK 17
Vertex Detector Overview Prototypes R&D Plans Summary.
TCAD Simulation and test setup For CMOS Pixel Sensor based on a 0
Beam Test Results for the CMS Forward Pixel Detector
R&D of CMOS pixel Shandong University
Presentation transcript:

DEPFET Prototype System for the ILC Vertex detector: First test beam results Lars Reuen, 7th Conference on Position Sensitive Devices, Liverpool Univ. of Bonn: M.Karagounis, R.Kohrs, H.Krüger, L.Reuen, C.Sandow, E.von Törne, M.Trimpl, J.Velthuis, N.Wermes Univ. of Mannheim: P.Fischer, F.Giesen, I.Peric MPI Halbleiterlabor Munich: L.Andricek, G.Lutz, H.G. Moser, R.H.Richter, M.Schnecke, L.Strüder, J.Treis, P.Lechner

Lars Reuen, PSD 2005 Liverpool Overview Reminder ILC requirements DEPFET principle of operation DEPFET ILC prototype system Material Budget  Power dissipation First Test Beam Results 12. Sep. 2005 Lars Reuen, PSD 2005 Liverpool

Lars Reuen, PSD 2005 Liverpool ILC requirements Time structure: one train of 2820 crossings in ~1 ms every ~200ms  Hit density: for r = 15 mm: ~ 100 tracks / mm2 / train  Row readout rate: > 20 MHz  Occupancy < 0.5 % Radiation length: ~0.1% X0 per layer  thinned sensors (50 μm)  low power consumption Radiation tolerance:  200 krad (for 5 years operation) Resolution: few µm ( pixel size ≤ 25 x 25 µm2) Talk by G. Lutz Poster by L. Andricek 12. Sep. 2005 Lars Reuen, PSD 2005 Liverpool

DEPFET principle of operation A p-FET transistor is integrated in every pixel Electrons are collected at an „internal gate“ and modulate the transistor current Signal charge is removed via a clear contact Potential distribution: MIP source top gate drain clear bulk p+ n+ p+ ~1µm n+ n+ p - s i n x internal gate a - + y t r e 50 µm m m y s n - p+ rear contact Fast signal collection in fully depleted bulk Low noise due to small capacitance and first amplification in pixel Transistor can be switched off by external gate – charge collection is then still active ! 12. Sep. 2005 Lars Reuen, PSD 2005 Liverpool

DEPFET matrix operation Switcher: 64 x 2 outputs Max ΔV = 25V Clear and Select pixel matrix with row wise read out CURO: current based read out 128 channels pedestal subtraction real time hit finding & zero-suppression Noise per sampling: 30 nA @ 24 MHz row rate up to 24 MHz Matrix: MPI, Munich Switcher: Mannheim Univ., Bonn University CURO: Bonn University 12. Sep. 2005 Lars Reuen, PSD 2005 Liverpool

DEPFET prototype system Gate Switcher DEPFET Matrix 64x128 pixels, 36 x 28.5µm2 Clear Switcher Current Readout CUROII PCB with DEPFET matrix Analog board with ADCs etc. USB based digital interface board 12. Sep. 2005 Lars Reuen, PSD 2005 Liverpool

Expected Power Dissipation Measured Power Dissipation:  Switcher: 6.3 mW per active channel at 50MHz  CURO: 2.8 mW / channel Assumed Power Dissipation of DEPFET Sensor:  PDEPFET: 0.5 mW per active pixel (VDrain= 5 V, IDrain= 100 µA) r=15.5 mm Only active pixel dissipate power 1024 active pixels per module 8 modules in Layer 1 8192 active pixels duty cycle: 1/200 Expected Power Dissipation in Layer 1:  Sensor: 8192 x 0.5 mW / 200 = 20 mW  Switcher: 16 x 6.3 mW / 200 = 0.5 mW  Curo: 8192 x 2.8 mW / 200 = 114 mW for Layer 1 Sum: 135 mW outside active area For 5 Layer DEPFET Vertex Detector: Total ~ 3.6 W  no active cooling 12. Sep. 2005 Lars Reuen, PSD 2005 Liverpool

Lars Reuen, PSD 2005 Liverpool Test beam Setup Telescope Modules Scintillator 3 x 3 mm² 1 2 DEPFET 3 4 beam Measurements at DESY test beam in Aug. 2005 with 6 GeV e- beam Bonn ATLAS telescope system: double sided strip detectors pitch 50 µm (no intermediate strips) readout rate 4.5 kHz (telescope only) 12. Sep. 2005 Lars Reuen, PSD 2005 Liverpool

Alignment & Multiple Scattering Aligning the telescope modules in the beam: Select events with tracks through all modules Make a linear fit through the track points of the telescope planes Aligning (incl. rotation) is done iteratively by minimizing the residuals between predicted and real hit position. Multiple scattering makes precise track fitting difficult σθ ~ 1 / β∙p minimize scattering  select straight tracks by applying a ² cut on the track fit Measured residuals of the telescope planes: σ ≈ 11 µm (DUT and resp. plane not included in fit) 12. Sep. 2005 Lars Reuen, PSD 2005 Liverpool

Data Processing & Clustering Apply Seed Cut Sort by Pulse Height Check for double counting 2 d) Apply neighbor cut, if pixel is inside ROI around seed 3 Corrections on raw data: Pedestal subtraction Common Mode subtraction 64 columns 128 Rows Hit in raw data! event display 1 Position reconstruction  center of gravity method 4 Compare with track fit results Selecting stiff tracks  2 - cut 5 12. Sep. 2005 Lars Reuen, PSD 2005 Liverpool

First Test beam results: S/N Noise: 225 e- SignalMPV = 32500 e- Typical cluster sizes: 4-6 pixels (6 σ Seed cut) x 10 Purity ≈ 0.97 Efficiency ≈ 0.99 S/N = 144 for 450 µm  S/N ~ 15 for 50 µm 12. Sep. 2005 Lars Reuen, PSD 2005 Liverpool

First Test beam results: spatial residuals Center of Gravity method stiff tracks (2 – cut) Preliminary For 6 GeV e- spatial residuals are dominated by multiple scattering Pixel Size 36 x 28.5 µm  Spatial residuals σres ~ 10 μm Binary position reconstruction ( ) σsp ~ 10.4 x 8.3 µm Center of Gravity (S/N ~ 144!) expected σsp ~ 2 - 4 µm For spatial resolution studies a high energy beam is needed. 12. Sep. 2005 Lars Reuen, PSD 2005 Liverpool

Lars Reuen, PSD 2005 Liverpool Summary A ILC prototype system has been build with two fast steering chips a 64 x 128 DEPFET pixel matrix Current based readout chip with on-chip CDS and zero-suppression Test beam with 6 GeV e- @ DESY Successful operation of the system Signal over Noise better than 140 (450 µm)  S/N ~ 15 for 50 µm thick sensors efficiency of 99%, spatial residuals dominated by multiple scattering ILC milestones Excellent radiation tolerance of DEPFET pixels up to 1 Mrad (SiO2) (60Co, 17 keV X-rays) Radiation length of 0.11% X0 can be achieved Low power consumption: > 5 W for the entire vertex detector Read out chips close to ILC specifications Next Steps: High energy test beam Close to full scale prototype module (512 x 512 pixels) 12. Sep. 2005 Lars Reuen, PSD 2005 Liverpool

ILC DEPFET Module (Layer 1) Modules have active area ~13 x 100 mm2 They are read out on both sides. R/O chips R/O chips Active area: 512 x 4096 pixels of 25 x 25 µm2 = 12.8 x 102.4 mm2 steering chips Cross section of a module ‘Holes’ in frame can save material thinned Chips (50 µm), connection via bump bonding Thinned sensor (50 µm) in active area 13x100 mm2, 50 μm: 0.05% X0 4x100 mm2, 50% of 300 μm: 0.05 % X0 2x100 mm2, 50 μm: 0.01% X0 Total radiation length: 0.11% X0 12. Sep. 2005 Lars Reuen, PSD 2005 Liverpool

Thinning DEPFET sensors sensor wafer handle wafer 1. implant backside on sensor wafer 2. bond wafers with SiO2 in between 3. thin sensor side to desired thick. 4. process DEPFETs on top side 5. etch backside up to oxide/implant first ‘dummy’ samples: 50µm silicon with 350µm frame thinned diode structures: leakage current: <1nA /cm2 Thinning technology for active area established 12. Sep. 2005 Lars Reuen, PSD 2005 Liverpool

Lars Reuen, PSD 2005 Liverpool Backup I: 12. Sep. 2005 Lars Reuen, PSD 2005 Liverpool

Lars Reuen, PSD 2005 Liverpool Backup II: 12. Sep. 2005 Lars Reuen, PSD 2005 Liverpool

Transconductance remains unchanged Radiation Tolerance Threshold shift of the (external) MOSFET (oxide thickness ~200nm) Irradiations with 60Co and X-rays (~17keV) up to ~1Mrad (SiO2) Poster by L. Andricek 60Co 200krad Threshold shift saturates at -5 V (OFF)  Compensation by variation of bias voltage Transconductance remains unchanged transconductance vs. drain current excellent tolerance against ionizing radiation 12. Sep. 2005 Lars Reuen, PSD 2005 Liverpool