Nucleic Acids Function: Examples: Structure:

Slides:



Advertisements
Similar presentations
Nucleic Acids Information storage proteins DNA Nucleic Acids Function: – genetic material stores information – genes – blueprint for building proteins.
Advertisements

AP Biology Nucleic acids AP Biology Nucleic Acids Information storage.
Nucleic acids Nucleic Acids Information storage.
AP Biology HELIXHELIX AP Biology Nucleic Acids Information storage.
AP Biology Nucleic acids AP Biology Nucleic Acids.
AP Biology Nucleic acids AP Biology Nucleic Acids Information storage.
Nucleic Acids Information storage proteins DNA Nucleic Acids Function: – genetic material stores information – genes – blueprint for building proteins.
AP Biology Nucleic acids AP Biology Nucleic Acids Information storage.
Proteins.
AP Biology Nucleic Acids Information storage.
AP Biology Nucleic Acids Information storage.
AP Biology AP Biology John D. O’Bryant School of Mathematics and Science September 17, 2012.
AP Biology Nucleic Acids Information storage Energy Transfer.
AP Biology The Building Blocks  3.3 Nucleic Acids.
AP Biology Nucleic acids AP Biology Nucleic Acids Information storage.
MCC BP Based on work by K. Foglia
HELIXHELIX.
AP Biology Nucleic Acids Nucleic Acids Function: – store & transmit hereditary information polymers = – RNA (ribonucleic acid) – DNA (deoxyribonucleic.
W-H Based on work by K. Foglia. AP Biology Chapter 5. Macromolecules: Nucleic Acids.
AP Biology Nucleic Acids Information storage proteins DNA Nucleic Acids  Function:  genetic material  stores information  genes  blueprint for building.
Unit 2: Molecular Genetics Bi 1d: Central Dogma Bi 5a: DNA, RNA, protein structure and function Bi 5b: Base pairing rules.
Nucleic Acids  Function:  store & transmit hereditary information  Examples:  RNA (ribonucleic acid)  DNA (deoxyribonucleic acid)  Structure: 
AP Biology. Nucleic Acids  Function:  store & transmit hereditary information  Examples:  RNA (ribonucleic acid)  DNA (deoxyribonucleic acid)  Structure:
AP Biology Nucleic acids AP Biology Nucleic Acids Information storage.
AP Biology Nucleic Acids AP Biology Nucleic acids.
AP Biology Nucleic acids AP Biology Nucleic Acids Information storage.
AP Biology Nucleic Acids Information storage & Energy transfer.
AP Biology. Chapter 5. Macromolecules: Nucleic Acids.
Nucleic Acids Information storage
Nucleic acids
Nucleic acids
Nucleic Acids Information storage
AP Biology.
HELIXHELIX.
Nucleic Acids Information storage.
Nucleic acids
Nucleic Acids Information storage
DNA Structure and Replication.
HELIXHELIX.
HELIXHELIX.
Nucleic acids
Chapter 5.5 Nucleic Acids.
Information molecules
The structure of Nucleic Acids
Nucleic Acids.
Nucleic Acids Information storage.
Nucleic Acids Information storage.
Nucleic Acids Information storage
Nucleic Acids Information storage.
Nucleic acids
Nucleic acids
Nucleic acids
Nucleic acids
Nucleic acids
Chapter 5.5 Nucleic Acids.
Macromolecule Review.
Nucleic Acids Information storage
Chapter 5. Macromolecules: Nucleic Acids
Nucleic acids
Nucleic acids
Nucleic acids
Nucleic acids
Nucleic Acids Information storage
Nucleic acids.
Nucleic acids
Nucleic acids
Nucleic acids
Nucleic Acids Information storage
A T C G Isn’t this a great illustration!?.
Canned food notes… -We delivered cans last night to a food pantry near NFHS. We donated 3 rolling “trash” bins full of cans, and doubled the existing.
Presentation transcript:

Nucleic Acids Function: Examples: Structure: store & transmit hereditary information Examples: RNA (ribonucleic acid) DNA (deoxyribonucleic acid) Structure: monomers = nucleotides

Nucleotides 3 parts pentose sugar (5C) nitrogen base (C-N ring) ribose in RNA deoxyribose in DNA PO4 group

Types of nucleotides 2 types of nucleotides different Nitrogen bases purines double ring N base adenine (A) guanine (G) pyrimidines single ring N base cytosine (C) thymine (T) uracil (U)

Building the polymer

Nucleic polymer Backbone sugar to PO4 bond phosphodiester bond new base added to sugar of previous base polymer grows in one direction N bases hang off the sugar-phosphate backbone Why is this important?

RNA & DNA RNA DNA single nucleotide chain double nucleotide chain N bases bond in pairs across chains spiraled in a double helix double helix 1st proposed as structure of DNA in 1953 by James Watson & Francis Crick (just celebrated 50th anniversary!)

Pairing of nucleotides Nucleotides bond between DNA strands H bonds purine :: pyrimidine A :: T 2 H bonds G :: C 3 H bonds The 2 strands are complementary. One becomes the template of the other & each can be a template to recreate the whole molecule. Why is this important?

Information polymer Function like the letters of a book series of bases encodes information like the letters of a book stored information is passed from parent to offspring need to copy accurately stored information = genes genetic information All other biomolecules we spoke about served physical or chemical functions. DNA & RNA are information storage molecules. DNA well-suited for an information storage molecule: chemically stable stores information in the varying sequence of nucleotides (the genetic code) its coded sequence can be copied exactly by the synthesis of complementary strands; easily unzipped & re-zipped without damage (weak H bonds) damage to one strand can be repaired by addition of bases that match the complementary strand

Isn’t this a great illustration!?

Why is it important that the strands are bonded by H bonds? DNA molecule Double helix H bonds between bases join the 2 strands A :: T C :: G H bonds = biology’s weak bond • easy to unzip double helix for replication and then re-zip for storage • easy to unzip to “read” gene and then re-zip for storage Why is it important that the strands are bonded by H bonds?

Copying DNA Replication 2 strands of DNA helix are complementary have one, can build other have one, can rebuild the whole why is this a good system? when in the life of a cell does replication occur? when cells divide, they must duplicate DNA exactly for the new “daughter” cells Why is this a good system? mitosis meiosis

Interesting note… Ratio of A-T::G-C affects stability of DNA molecule 2 H bonds vs. 3 H bonds biotech procedures more G-C = need higher T° to separate strands high T° organisms many G-C parasites many A-T (don’t know why) At the foundation of biology is chemistry!!

Another interesting note… ATP Adenosine triphosphate modified nucleotide adenine ribose + Pi + Pi + Pi + +

Macromolecule Review

Carbohydrates Structure / monomer Function Examples monosaccharide energy raw materials energy storage structural compounds Examples glucose, starch, cellulose, glycogen glycosidic bond

Lipids Structure / building block Function Examples glycerol, fatty acid, cholesterol, H-C chains Function energy storage membranes hormones Examples fat, phospholipids, steroids ester bond (in a fat)

Proteins Structure / monomer Function Examples amino acids levels of structure Function enzymes u defense transport u structure signals u receptors Examples digestive enzymes, membrane channels, insulin hormone, actin peptide bond

Nucleic acids Structure / monomer Function Examples nucleotide information storage & transfer Examples DNA, RNA phosphodiester bond