Presentation is loading. Please wait.

Presentation is loading. Please wait.

Digital System Clocking: High-Performance and Low-Power Aspects Vojin G. Oklobdzija, Vladimir M. Stojanovic, Dejan M. Markovic, Nikola M. Nedovic Wiley-Interscience.

Similar presentations


Presentation on theme: "Digital System Clocking: High-Performance and Low-Power Aspects Vojin G. Oklobdzija, Vladimir M. Stojanovic, Dejan M. Markovic, Nikola M. Nedovic Wiley-Interscience."— Presentation transcript:

1 Digital System Clocking: High-Performance and Low-Power Aspects Vojin G. Oklobdzija, Vladimir M. Stojanovic, Dejan M. Markovic, Nikola M. Nedovic Wiley-Interscience and IEEE Press, January 2003 Chapter 6: Low-Energy System Issues

2 Nov. 14, 2003Digital System Clocking: Oklobdzija, Stojanovic, Markovic, Nedovic2 Clocking Energy System Issues Increasing clock frequency Low skew requirements Deeper pipelining Increased Clocking Energy Focus on energy minimization Methods for Energy Reduction Supply voltage scaling Alternate circuit topology New clocking strategies

3 Nov. 14, 2003Digital System Clocking: Oklobdzija, Stojanovic, Markovic, Nedovic3 Switching Energy Clock is the highest activity signal  Switching energy is dominant  - probability of a 0-1 transition C i – total switched capacitance at node i V swing (i) – voltage swing at node i V DD – supply voltage N – number of nodes Energy is best reduced by scaling down V DD, but this also means performance degradation

4 Nov. 14, 2003Digital System Clocking: Oklobdzija, Stojanovic, Markovic, Nedovic4 Supply Voltage Scaling Supply voltage is the most dominant tuning knob for energy reduction Not always possible due to performance requirements Flip-flop speed scales favorably with Vdd compared to standard CMOS inverter Improved slow-path requirements Internal race immunity tracks scaling of an inverter Same fast-path requirements

5 Nov. 14, 2003Digital System Clocking: Oklobdzija, Stojanovic, Markovic, Nedovic5 Impact of Vdd on (a) delay, and (b) internal race immunity (0.25  m, light load). (Markovic et al. 2001), Copyright © 2001 IEEE (a)(b) (Delay is normalized to FO4 at its respective V DD. FO4 as defined in this example increases with V DD  performance degradation) Pulsed Designs Scale the Best with V DD

6 Nov. 14, 2003Digital System Clocking: Oklobdzija, Stojanovic, Markovic, Nedovic6 Minimizing Switched Capacitance Clocked capacitances are the most important to minimize due to their high switching activity Reduce Csw by circuit sizing that takes into account both energy and performance Topology dependent Lower limit imposed by the noise requirements

7 Nov. 14, 2003Digital System Clocking: Oklobdzija, Stojanovic, Markovic, Nedovic7 Other Energy Reduction Techniques Low-Swing Circuit Techniques Reduced-swing Clk drivers CSE redesign N-only CSEs with Low-Vcc Clk Clock Gating Global Local Dual-Edge Triggering Latch-mux Pulsed-latch Flip-flop

8 Nov. 14, 2003Digital System Clocking: Oklobdzija, Stojanovic, Markovic, Nedovic8 Other Energy Reduction Techniques Low-Swing Circuit Techniques Reduced-swing Clk drivers CSE redesign N-only CSEs with Low-Vcc Clk Clock Gating Global Local Dual-Edge Triggering Latch-mux Pulsed-latch Flip-flop

9 Nov. 14, 2003Digital System Clocking: Oklobdzija, Stojanovic, Markovic, Nedovic9 Clock driver for half-swing clocking (Kojima at al. 1995), Copyright © 1995 IEEE Low-Swing Clocking, Option #1: Clock Driver Re-design 50% power reduction with half-swing clock (minus some penalty in clock drivers)

10 Nov. 14, 2003Digital System Clocking: Oklobdzija, Stojanovic, Markovic, Nedovic10 Reduced clock-swing flip-flop (Kawaguchi and Sakurai, 1998), Copyright © 1998 IEEE Low-Swing Clocking, Option #2: CSE Re-design PMOS does not fully turn-off D Clk Q Q V well > V DD V V Clk (V DD -nV th ) n Clock drivers V DD-Low Clk (V DD-Low ) Clk (V DD -V th ) E (a),(b) ~V DD (V -V th ) (a) (b) (c) E (c) ~(V DD -V th ) 2

11 Nov. 14, 2003Digital System Clocking: Oklobdzija, Stojanovic, Markovic, Nedovic11 N-Only clocked M-S latch Low-Swing Clocking, Option #3: N-only CSEs N-only clocked transistors, M-S Latch Example (N 1 and N 2 improve pull-up on S M )

12 Nov. 14, 2003Digital System Clocking: Oklobdzija, Stojanovic, Markovic, Nedovic12 Other Energy Reduction Techniques Low-Swing Circuit Techniques Reduced-swing Clk drivers CSE redesign N-only CSEs with Low-Vcc Clk Clock Gating Global Local Dual-Edge Triggering Latch-mux Pulsed-latch Flip-flop

13 Nov. 14, 2003Digital System Clocking: Oklobdzija, Stojanovic, Markovic, Nedovic13 (a) Nongated clock circuit, (b) gated clock circuit. (Kitahara et al. 1998), Copyright © 1998 IEEE Clock Gating, Option #1: Global Clock Gating Used to save clocking energy when data activity is low Time-mux (no gating!) Global Clk Gating DQ 0 1 S Clk Load In REG DQ Clk EN In (a)(b)

14 Nov. 14, 2003Digital System Clocking: Oklobdzija, Stojanovic, Markovic, Nedovic14 Data-transition look-ahead latch (Nogawa and Ohtomo, 1998), Copyright © 1998 IEEE Clock Gating, Option #2: Local Clock Gating DQ CP Q M Clk CP P 1 CPI CP Data-Transition Look-Ahead Clock Control Pulse Generator CP

15 Nov. 14, 2003Digital System Clocking: Oklobdzija, Stojanovic, Markovic, Nedovic15 Conditional capture flip-flop (Kong et al. 2000), Copyright © 2000 IEEE Local Clock Gating, Another Example D Clk D QQ S' S R' R Clk ** QQ NN SR 1 S'R' Clk enabled only when D  Q

16 Nov. 14, 2003Digital System Clocking: Oklobdzija, Stojanovic, Markovic, Nedovic16 Other Energy Reduction Techniques Low-Swing Circuit Techniques Reduced-swing Clk drivers CSE redesign N-only CSEs with Low-Vcc Clk Clock Gating Global Local Dual-Edge Triggering Latch-mux Pulsed-latch Flip-flop

17 Nov. 14, 2003Digital System Clocking: Oklobdzija, Stojanovic, Markovic, Nedovic17 Dual-edge-triggered latch-mux design Dual-Edge Triggering, Option #1: Latch-Mux Used to save clocking energy regardless of data activity! DQ QC 0 1 S DQ QC Q Clk D

18 Nov. 14, 2003Digital System Clocking: Oklobdzija, Stojanovic, Markovic, Nedovic18 Dual-edge-triggered latch-mux circuit (Llopis and Sachdev, 1996), Copyright © 1996 IEEE DET Latch-Mux: Circuit Example

19 Nov. 14, 2003Digital System Clocking: Oklobdzija, Stojanovic, Markovic, Nedovic19 Dual-edge-triggered pulsed-latch design Dual-Edge Triggering, Option #2: Pulsed-Latch C C DQ QC Clk DQ Q Pulse Gen Pulse Gen

20 Nov. 14, 2003Digital System Clocking: Oklobdzija, Stojanovic, Markovic, Nedovic20 Pulsed-latch: (a) single-edge-triggered; (b) dual-edge-triggered DET Pulsed-Latch: Circuit Examples Clk 1 D D (a)(b) Q Clk Q 1 1 2 2 1 2 2 2 2 1 1 1 1

21 Nov. 14, 2003Digital System Clocking: Oklobdzija, Stojanovic, Markovic, Nedovic21 Dual-edge-triggered flip-flop design Dual-Edge Triggered Flip-Flop Q Q CL Clk D Q Q R S C D R S C D

22 Nov. 14, 2003Digital System Clocking: Oklobdzija, Stojanovic, Markovic, Nedovic22 DET symmetric pulse-generator flip-flop DET Flip-Flop: Circuit Example

23 Nov. 14, 2003Digital System Clocking: Oklobdzija, Stojanovic, Markovic, Nedovic23 H-tree clock distribution network Clock Distribution for DET CSEs

24 Nov. 14, 2003Digital System Clocking: Oklobdzija, Stojanovic, Markovic, Nedovic24 Clocking Power: SET vs. DET DET wins if the total clock load capacitance is below 2x the capacitance of a SET design

25 Nov. 14, 2003Digital System Clocking: Oklobdzija, Stojanovic, Markovic, Nedovic25 Glitch Tolerant Design Are CSEs that are the best in terms of active power also favorable in terms of glitch power? The opposite is true So, let’s investigate how glitch power scales with data and glitching activity

26 Nov. 14, 2003Digital System Clocking: Oklobdzija, Stojanovic, Markovic, Nedovic26 Comparison of average glitching energy in CSEs (Markovic at al. 2001), Copyright © 2001 IEEE Average Glitching Energy in CSEs

27 Nov. 14, 2003Digital System Clocking: Oklobdzija, Stojanovic, Markovic, Nedovic27 Glitching energy as a percentage of switching energy in representative CSEs showing the greatest glitch sensitivity of the gated designs Comparison of E glitching and E switching

28 Nov. 14, 2003Digital System Clocking: Oklobdzija, Stojanovic, Markovic, Nedovic28 Summary Energy best reduced by V DD scaling Penalty in performance Reducing Clk swing only reduces E Clk Still penalty in performance Clock gating Reduces E Clk at low-activity No penalty in perf. if gating is outside crit-path Dual-Edge Triggering Reduces E Clk ideally by 2x Small or no performance degradation


Download ppt "Digital System Clocking: High-Performance and Low-Power Aspects Vojin G. Oklobdzija, Vladimir M. Stojanovic, Dejan M. Markovic, Nikola M. Nedovic Wiley-Interscience."

Similar presentations


Ads by Google