Presentation is loading. Please wait.

Presentation is loading. Please wait.

Mechanical and Industrial Engineering University of Massachusetts Amherst, MA, USA Nano-Impact Jonathan P. Rothstein and Mark Tuominen.

Similar presentations


Presentation on theme: "Mechanical and Industrial Engineering University of Massachusetts Amherst, MA, USA Nano-Impact Jonathan P. Rothstein and Mark Tuominen."— Presentation transcript:

1 Mechanical and Industrial Engineering University of Massachusetts Amherst, MA, USA Nano-Impact Jonathan P. Rothstein and Mark Tuominen

2 Making a Better Bulletproof Vest A group of researchers at Univ. Del. have impregnated Kevlar vests with a nanoparticle colloidal suspension resulting in a dramatic improvement in projectile impact. The addition of a very small amount of fluid increased performance equivalent to doubling the number of Kevlar sheets while not changing flexibility of fabric. Why? Lee, Wetzel and Wagner J. Material Science (2003) Kevlar Kevlar & Nanoparticle Suspension

3 Making a Better Bulletproof Vest A group of researchers at Univ. Del. have impregnated Kevlar vests with a nanoparticle colloidal suspension resulting in a dramatic improvement in projectile impact. The addition of a very small amount of fluid increased performance equivalent to doubling the number of Kevlar sheets while not changing flexibility of fabric. Why? Kevlar Kevlar & Nanoparticle Suspension

4 Nanoparticle Suspensions The nanoparticle (d = 13nm) suspensions are shear thickening – the faster you shear or stretch them more viscous (thick) they become. The dramatic increase in viscosity dissipates energy as the Kevlar fibers are pulled out by the impact of the bullets. Increasing Stretch Rate

5 Why Size Matters For large particles the fluid remains Newtonian like air or water below 30wt% Above 30% interactions between and collisions of particles result shear thickening and elastic effects – particles interact to form large aggregate structures For nanoparticles, the effect of nanoparticle addition can be observed at concentrations closer to 1wt% - why? Surface area increases with reduced particle size resulting in enhanced interparticle interactions At same volume fraction smaller particles are packed closer together – electrostatic interactions are stronger and diffusion is faster so they interact more frequently. 1 m Particles 100nm Particles 10nm Particles

6 Copying Nature – Biomimetic Superhydrophobic Surfaces The leaves of the lotus plant are superhydrophobic – water beads up on the surface of the plant and moves freely with almost no resistance making the leaves self-cleaning. The surface of the lotus leaf has 10 m sized bumps which are coated by 1nm sized waxy crystals which make the surface extremely hydrophobic - repel water. The water does not wet the entire surface of the leaf, but only the tops of the large scale roughness. Synthetic superhydrophobic surfaces have designed to produce stain-resistant clothing and coatings for buildings and windows to make them self-cleaning. Water Drops on a Lotus Leaf

7 Drop Motion on a Superhydrophobic Surfaces Droplets dont wet, but roll down superhydrophobic surfaces. Water-based stains dont adsorb. Dirt is picked up by rolling drop as it moves. Superhydrophobic Surface Dirt

8 Using Superhydrophobic Surfaces to Reduce Drag We are currently using superhydrophobic surfaces to develop a passive, inexpensive technique that can generate drag reduction in both laminar and turbulent flows. This technology could have a significant impact on applications from microfluidics and nanofluidics to submarines and surface ships. How does it work? The water touches only the tops of the post and a shear-free air-water interfaces is supported – effectively reducing the surface area. Currently capable of reducing drag by over 70% in both laminar and turbulent flows! w d 15μm PDMS Carbon Nanotubes

9 Can These Surfaces Have a Real Impact? 60μm Current Energy Resources – Fossil Fuels Increasing scarcity Increasing cost Dangerous to maintain security Ocean-going vessels accounted for 72% of all U.S. imports in 2006 Technology could be employed to make ships more efficient or faster Friction drag accounts for 90% of total drag experienced by a slow moving vessel A 25% reduction in friction drag on a typical Suezmax Crude Carrier could… Save $5,500 USD / day in #6 fuel oil Prevent 43 metric tons of CO 2 from entering the atmosphere each day The GENMAR GEORGE T (Japan Universal Shipbuilding, Tsu shipyard)

10 Why Size Matters To support larger and larger pressures and pressure drops, the spacing of the roughness on the ultrahydrophobic surfaces must be reduced into the nanoscale. Currently developing processing techniques for large area nanofabrication of superhydrophobic surfaces with precise patterns of surface roughness. Roll-to-roll nano-imprint lithography – a cutting edge tool. Supply Drive Module Coating Module Imprinting Module Receive Drive Module

11 Why Roll-to-Roll Nanoimprint Lithography Roll-to-roll technology will enable fabrication of nanostructured materials and devices by a simple, rapid, high volume, cost-effective platform. Current cost of nanofabrication is $25,000/m 2 This technology capable of pushing it to $25/m 2 Will help address many of the challenges facing society. Supply Drive Module Coating Module

12 Challenges facing society Water Energy Health Sustainable development Environment Knowledge Economy

13 Global Grand Challenges 2008 NAE Grand Challenges

14 nano.gov

15 Top Program Areas of the NNI for Fundamental nanoscale phenomena and processes 2. Nanomaterials 3. Nanoscale devices and systems 4. Instrumentation research, metrology, and standards 5. Nanomanufacturing 6. Major research facilities and instrumentation 7. Environment, health and safety 8. Education and societal dimensions 484M 342M 402M 77M 101M 203M 117M 35M

16 Important Strides in Nano Environmental, Health and Safety NIOSH: "Approaches to Safe Nanotechnology" -Emphasizing effective control banding -Now an ISO standard NIH: Nano Health Enterprise Initiative DuPont/EDF: Nano Risk Framework ACS: Lab Safety Guidelines For Handling Nanomaterials Lockheed-Martin: Enterprise-wide Procedure for Environmental, Safety and Health Management of Nanomaterials

17 NSF Centers Dedicated to Nano EHS University of California Center for the Environmental Implications of NanoTechnology Duke Center for the Environmental Implications of NanoTechnology (CEINT) Rice University Center for Biological and Environmental Nanotechnology Components within other centers Other Federal EHS Activities National Institute for Environmental Health Science NIH Nanomaterials Characterization Laboratory NIOSH EPA FDA Industrial EHS Testing

18 Standards: ISO TC 229 Terminology and Nomenclature Measurement Safety Materials Specifications

19 Nanomanufacturing - the essential link between laboratory innovations and nanotechnology products.

20 Nanomanufacturing Processes must work at a commercially relevant scale Cost is a key factor Must be reproducible and reliable EHS under control Nanomanufacturing includes top-down and bottom-up techniques, and integration of both Must form part of a value chain

21 CNT-based transparent conducting electrodes - replaces indium tin oxide for displays and solar cells Synthetic processes of monodisperse nanoparticles with designer surface ligands - impacts many applications Block copolymer nanoscale patterning - utilization of molecular self-assembly for magnetic data storage and other applications Self-alignment processes - utilizes natural interactions for nanoscale integration; enabling roll-to-roll processing Past 10 years: Major Accomplishments in Synthesis, Assembly and Processing (Nanomanufacturing)

22 Scalable processes for carbon nanotubes and graphene - impacts many applications Plasmonic lithography - produce smaller critical dimensions by beating far-field diffraction limitations Use of bulk metallic glass materials for nanoscale molding - masters for nanoimprint lithography; curved surfaces Past 10 years: Major Accomplishments in Synthesis, Assembly and Processing (Nanomanufacturing) -- cont.

23 NanoMFG Processes Materials Metrology Workforce EHS Information Tools Education Standards Economic Nanomanufacturing Enterprise (Science-based) To create nanomanufacturing excellence, we must attend to all parts of the value chain.

24 Nanomanufacturing Stakeholders Academic Centers Academic Centers Industry Government Labs & Agencies Government Labs & Agencies

25 Four NSF Nanomanufacturing Research Centers –Center for Hierarchical Manufacturing (CHM) - UMass Amherst/UPR/MHC/Binghamton –Center for High-Rate Nanomanufacturing (CHN) - Northeastern/UMass Lowell/UNH –Center for Scalable and Integrated Nanomanufacturing (SINAM) - UC Berkeley/UCLA/UCSD/Stanford/UNC Charlotte –Center for Nanoscale Chemical-Electrical-Mechanical Manufacturing Systems (Nano-CEMMS) - UIUC/CalTech/NC A&T

26 An open access network for the advancement of nanomanufacturing R&D and education –Cooperative activities (real-space) –Informatics (cyber-space) Mission: A catalyst -- to support and develop communities of practice in nanomanufacturing.

27 nanomanufacturing.org

28 Nanoinformatics Nanotechnology meets Information Technology The development of effective mechanisms for collecting, sharing, visualizing, modeling and analyzing data and information relevant to the nanoscale science and engineering community. The utilization of information and communication technologies that help to launch and support efficient communities of practice.

29 The Medici Effect at Work: Interdisciplinary Teamwork in Nanotechnology Physics Chemistry Biology Materials Science Polymer Science Electrical Engineering Chemical Engineering Mechanical Engineering Medicine And others Electronics Materials Health/Biotech Chemical Environmental Energy Food Aerospace Automotive Security Forest products

30 Nano-informatics: Some Major Nanotech Research Communities Nanomanufacturing Environmental, Health & Safety Fundamental Research Societal Impact Modeling & Simulation National Infrastructure Health & Life Sciences Metrology Commercialization Education Energy Materials

31 "The Cathedral and the Bazaar" (Eric S. Raymond) The open source movement: The power of peer production by a large group with diverse agendas, expertise and perspectives Yet an appropriate degree of editorial control (a filter) by an expert body of authority ensures quality control

32 "Connect and Develop" (P&G) Open Innovation via a distributed network Printed Pringles and other examples


Download ppt "Mechanical and Industrial Engineering University of Massachusetts Amherst, MA, USA Nano-Impact Jonathan P. Rothstein and Mark Tuominen."

Similar presentations


Ads by Google