Download presentation

Presentation is loading. Please wait.

Published byGordon Deason Modified over 2 years ago

1
Diagnostic Metrics Week 2 Video 3

2
Different Methods, Different Measures Today we’ll continue our focus on classifiers Later this week we’ll discuss regressors And other methods will get worked in later in the course

3
Last class We discussed accuracy and Kappa Today, we’ll discuss additional metrics for assessing classifier goodness

4
ROC Receiver-Operating Characteristic Curve

5
ROC You are predicting something which has two values Correct/Incorrect Gaming the System/not Gaming the System Dropout/Not Dropout

6
ROC Your prediction model outputs a probability or other real value How good is your prediction model?

7
Example PREDICTIONTRUTH 0.10 0.71 0.440 0.40 0.81 0.550 0.20 0.10 0.090 0.190 0.511 0.140 0.951 0.30

8
ROC Take any number and use it as a cut-off Some number of predictions (maybe 0) will then be classified as 1’s The rest (maybe 0) will be classified as 0’s

9
Threshold = 0.5 PREDICTIONTRUTH 0.10 0.71 0.440 0.40 0.81 0.550 0.20 0.10 0.090 0.190 0.511 0.140 0.951 0.30

10
Threshold = 0.6 PREDICTIONTRUTH 0.10 0.71 0.440 0.40 0.81 0.550 0.20 0.10 0.090 0.190 0.511 0.140 0.951 0.30

11
Four possibilities True positive False positive True negative False negative

12
Threshold = 0.6 PREDICTIONTRUTH 0.10TRUE NEGATIVE 0.71TRUE POSITIVE 0.440TRUE NEGATIVE 0.40TRUE NEGATIVE 0.81TRUE POSITIVE 0.550TRUE NEGATIVE 0.20TRUE NEGATIVE 0.10TRUE NEGATIVE 0.090TRUE NEGATIVE 0.190TRUE NEGATIVE 0.511FALSE NEGATIVE 0.140TRUE NEGATIVE 0.951TRUE POSITIVE 0.30TRUE NEGATIVE

13
Threshold = 0.5 PREDICTIONTRUTH 0.10TRUE NEGATIVE 0.71TRUE POSITIVE 0.440TRUE NEGATIVE 0.40TRUE NEGATIVE 0.81TRUE POSITIVE 0.550FALSE POSITIVE 0.20TRUE NEGATIVE 0.10TRUE NEGATIVE 0.090TRUE NEGATIVE 0.190TRUE NEGATIVE 0.511TRUE POSITIVE 0.140TRUE NEGATIVE 0.951TRUE POSITIVE 0.30TRUE NEGATIVE

14
Threshold = 0.99 PREDICTIONTRUTH 0.10TRUE NEGATIVE 0.71FALSE NEGATIVE 0.440TRUE NEGATIVE 0.40TRUE NEGATIVE 0.81FALSE NEGATIVE 0.550TRUE NEGATIVE 0.20TRUE NEGATIVE 0.10TRUE NEGATIVE 0.090TRUE NEGATIVE 0.190TRUE NEGATIVE 0.511FALSE NEGATIVE 0.140TRUE NEGATIVE 0.951FALSE NEGATIVE 0.30TRUE NEGATIVE

15
ROC curve X axis = Percent false positives (versus true negatives) False positives to the right Y axis = Percent true positives (versus false negatives) True positives going up

16
Example

17
Is this a good model or a bad model?

18
Chance model

19
Good model (but note stair steps)

20
Poor model

21
So bad it’s good

22
A’: A close relative of ROC The probability that if the model is given an example from each category, it will accurately identify which is which

23
A’ Is mathematically equivalent to the Wilcoxon statistic (Hanley & McNeil, 1982) Useful result, because it means that you can compute statistical tests for Whether two A’ values are significantly different Same data set or different data sets! Whether an A’ value is significantly different than chance

24
Notes Not really a good way (yet) to compute A’ for 3 or more categories There are methods, but the semantics change somewhat

25
Comparing Two Models (ANY two models)

26
Comparing Model to Chance 0.5 0

27
Equations

28
Complication This test assumes independence If you have data for multiple students, you usually should compute A’ and signifiance for each student and then integrate across students (Baker et al., 2008) There are reasons why you might not want to compute A’ within-student, for example if there is no intra-student variance If you don’t do this, don’t do a statistical test

29
A’ Closely mathematically approximates the area under the ROC curve, called AUC (Hanley & McNeil, 1982) The semantics of A’ are easier to understand, but it is often calculated as AUC Though at this moment, I can’t say I’m sure why – A’ actually seems mathematically easier

30
More Caution The implementations of AUC are buggy in all major statistical packages that I’ve looked at Special cases get messed up There is A’ code on my webpage that is more reliable for known special cases Computes as Wilcoxon rather than the faster but more mathematically difficult integral calculus

31
A’ and Kappa

32
A’ more difficult to compute only works for two categories (without complicated extensions) meaning is invariant across data sets (A’=0.6 is always better than A’=0.55) very easy to interpret statistically

33
A’ A’ values are almost always higher than Kappa values A’ takes confidence into account

34
Precision and Recall Precision = TP TP + FP Recall = TP TP + FN

35
What do these mean? Precision = The probability that a data point classified as true is actually true Recall = The probability that a data point that is actually true is classified as true

36
Next lecture Metrics for regressors

Similar presentations

OK

ChE 452 Lecture 07 Statistical Tests Of Rate Equations 1.

ChE 452 Lecture 07 Statistical Tests Of Rate Equations 1.

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on bluetooth broadcasting software Ppt on corporate etiquettes Ppt on autism Ppt on ip address classes subnet Ppt on limits and continuity examples Ppt on rbi reforms for the completion Ppt on asian continental Ppt on video teleconferencing companies Types of window display ppt on tv Presentation ppt on motivation theory