CHAPTER 6: MOSFET & RELATED DEVICES CHAPTER 6: MOSFET & RELATED DEVICES Part 2.

Slides:



Advertisements
Similar presentations
Lecture Metal-Oxide-Semiconductor (MOS) Field-Effect Transistors (FET) MOSFET Introduction 1.
Advertisements

MICROWAVE FET Microwave FET : operates in the microwave frequencies
ECSE-6230 Semiconductor Devices and Models I Lecture 14
Metal Oxide Semiconductor Field Effect Transistors
MODULE SYSTEM LOGIC GATE CIRCUIT DQ CMOS Inverter ASIC Full-Custom Semi-Custom Programmable FPGA PLD Cell-Based Gate Arrays General Purpose DRAM & SRAM.
Chapter 6 The Field Effect Transistor
Department of EECS University of California, Berkeley EECS 105 Fall 2003, Lecture 12 Lecture 12: MOS Transistor Models Prof. Niknejad.
Introduction to CMOS VLSI Design Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004.
Lecture 11: MOS Transistor
Introduction to VLSI Circuits and Systems, NCUT 2007 Chapter 6 Electrical Characteristic of MOSFETs Introduction to VLSI Circuits and Systems 積體電路概論 賴秉樑.
Field-effect transistors ( FETs) EBB424E Dr. Sabar D. Hutagalung School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia.
Metal Semiconductor Field Effect Transistors
Lecture 15 OUTLINE MOSFET structure & operation (qualitative)
EE415 VLSI Design The Devices: MOS Transistor [Adapted from Rabaey’s Digital Integrated Circuits, ©2002, J. Rabaey et al.]
Lecture #16 OUTLINE Diode analysis and applications continued
Outline Introduction – “Is there a limit?”
The metal-oxide field-effect transistor (MOSFET)
Week 8b OUTLINE Using pn-diodes to isolate transistors in an IC
Chap. 5 Field-effect transistors (FET) Importance for LSI/VLSI –Low fabrication cost –Small size –Low power consumption Applications –Microprocessors –Memories.
Dr. Nasim Zafar Electronics 1 - EEE 231 Fall Semester – 2012 COMSATS Institute of Information Technology Virtual campus Islamabad.
Microelectronics Circuit Analysis and Design Donald A. Neamen
VLSI design Lecture 1: MOS Transistor Theory. CMOS VLSI Design3: CMOS Transistor TheorySlide 2 Outline  Introduction  MOS Capacitor  nMOS I-V Characteristics.
Metal-Oxide- Semiconductor (MOS) Field-Effect Transistors (MOSFETs)
Metal-Oxide-Semiconductor Field Effect Transistors
Lecture 19 OUTLINE The MOSFET: Structure and operation
EE 466: VLSI Design Lecture 03.
Field-Effect Transistor
Digital Integrated Circuits© Prentice Hall 1995 Introduction The Devices.
Course Outline 1. Chapter 1: Signals and Amplifiers
ECE 342 Electronic Circuits 2. MOS Transistors
MOS Capacitors MOS capacitors are the basic building blocks of CMOS transistors MOS capacitors distill the basic physics of MOS transistors MOS capacitors.
Device Physics – Transistor Integrated Circuit
Norhayati Soin 06 KEEE 4426 WEEK 7/1 6/02/2006 CHAPTER 2 WEEK 7 CHAPTER 2 MOSFETS I-V CHARACTERISTICS CHAPTER 2.
Chapter 5: Field Effect Transistor
1 Metal-Oxide-Semicondutor FET (MOSFET) Copyright  2004 by Oxford University Press, Inc. 2 Figure 4.1 Physical structure of the enhancement-type NMOS.
EXAMPLE 6.1 OBJECTIVE Fp = 0.288 V
Chapter 4 Field-Effect Transistors
1 Fundamentals of Microelectronics  CH1 Why Microelectronics?  CH2 Basic Physics of Semiconductors  CH3 Diode Circuits  CH4 Physics of Bipolar Transistors.
CSCE 613: Fundamentals of VLSI Chip Design Instructor: Jason D. Bakos.
Field Effect Transistor. What is FET FET is abbreviation of Field Effect Transistor. This is a transistor in which current is controlled by voltage only.
Filed Effect Transistor.  In 1945, Shockley had an idea for making a solid state device out of semiconductors.  He reasoned that a strong electrical.
Device Characterization ECE/ChE 4752: Microelectronics Processing Laboratory Gary S. May April 1, 2004.
NMOS PMOS. K-Map of NAND gate CMOS Realization of NAND gate.
ECE340 ELECTRONICS I MOSFET TRANSISTORS AND AMPLIFIERS.
Junction Capacitances The n + regions forms a number of planar pn-junctions with the surrounding p-type substrate numbered 1-5 on the diagram. Planar junctions.
ECE442: Digital ElectronicsCSUN, Spring-2010-Zahid MOS Transistor ECE442: Digital Electronics.
1 Chapter 5. Metal Oxide Silicon Field-Effect Transistors (MOSFETs)
Structure and Operation of MOS Transistor
EE141 © Digital Integrated Circuits 2nd Devices 1 Goal of this lecture  Present understanding of device operation  nMOS/pMOS as switches  How to design.
11. 9/15 2 Figure A 2 M+N -bit memory chip organized as an array of 2 M rows  2 N columns. Memory SRAM organization organized as an array of 2.
CMOS VLSI Design CMOS Transistor Theory
EE210 Digital Electronics Class Lecture 6 May 08, 2008.
MOSFET Current Voltage Characteristics Consider the cross-sectional view of an n-channel MOSFET operating in linear mode (picture below) We assume the.
Metal-oxide-semiconductor field-effect transistors (MOSFETs) allow high density and low power dissipation. To reduce system cost and increase portability,
Field Effect Transistor (FET)
© S.N. Sabki CHAPTER 6: MOSFET & RELATED DEVICES CHAPTER 6: MOSFET & RELATED DEVICES.
CP 208 Digital Electronics Class Lecture 6 March 4, 2009.
Transistors (MOSFETs)
Introduction to CMOS VLSI Design CMOS Transistor Theory
Field-effect transistors ( FETs) MD.MASOOD AHMAD ASST.PROF ECE DEPT.
The MOS capacitor. (a) Physical structure of an n+-Si/SiO2/p-Si MOS capacitor, and (b) cross section (c) The energy band diagram under charge neutrality.
ECE 333 Linear Electronics
Damu, 2008EGE535 Fall 08, Lecture 21 EGE535 Low Power VLSI Design Lecture #2 MOSFET Basics.
CHAPTER 6: MOSFET & RELATED DEVICES CHAPTER 6: MOSFET & RELATED DEVICES Part 1.
Microelectronic Circuit Design McGraw-Hill Chapter 4 Field-Effect Transistors Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock.
UNIT II : BASIC ELECTRICAL PROPERTIES
MOS Field-Effect Transistors (MOSFETs)
Revision CHAPTER 6.
Chapter 6 Field Effect Transistors (FETs)
6.3.3 Short Channel Effects When the channel length is small (less than 1m), high field effect must be considered. For Si, a better approximation of field-dependent.
Presentation transcript:

CHAPTER 6: MOSFET & RELATED DEVICES CHAPTER 6: MOSFET & RELATED DEVICES Part 2

MOSFET

MOSFET FUNDAMENTALS Perspective view of a metal-oxide-semiconductor field- effect transistor (MOSFET). IGFET : insulating-gate field-effect transistor MISFET : Metal-insulator-semiconductor field-effect transistor MOST : Metal-oxide-semiconductor transistor Basic device parameters: Channel length, L, (distance between two metallurgical n+ -p junction) Channel width, Z Oxide thickness, d Junction depth, r j Substrate doping, N A

BASIC OPERATION 2) Low Drain Voltage : When a small drain voltage applied, electrons will flow from the source to the drain through the conducting channel. The channel acts as a resistor, and the drain current I D proportional to the drain voltage. Current flow can be controlled by using gate voltage. This create a linear region in IV curve 1)When V G =0 : Source and drain electrodes correspond to two p-n junctions connected back to back. Zero current flow from source to drain ideally. This create an inversion layer which will be a threshold voltage, V t prior current flow. When small positive voltage applied to gate, V G the central MOS structure is inverted and a channel is formed. Current begin to flow.

3) Onset On Saturation : If V D increases, the inversion layer width reduces as the V D is larger than V G. At one point, the inversion layer will disappear as the V D is enough to compensate the inversion layer strength. This point is called pinch off point and the V D saturates. 4) Beyond saturation : Beyond pinch off point, maximum number of electron will flow from source to drain. Therefore, the current saturation occur. The current flow now controlled by V G and independent of V D. The major changes is the reduction of channel length.

Derivation of basic characteristics under following conditions: a) The gate structure correspond to an ideal MOS diode – no interface traps, fixed-oxide charges or work function differences. b) Only drift current considered c)Carrier mobility in the inversion layer is constant d)Doping in the channel is uniform e)Reverse leakage current is negligibly small f)The transverse field created by the gate voltage in the channel is much larger than the longitudinal field created by the drain voltage g)The gradual-channel approximation – the charges contained in the surface depletion region of the substrate are induced solely from the field created by gate voltage

Figure (a) MOSFET operated in the linear region. (b) Enlarged view of the channel. (c) Drain voltage drop along the channel. Q S : Total charge induced in the semiconductor per unit area y : distance from the source  S (y) : surface potential at y C o =  ox /d : gate capacitance per unit area

Q n : charge in the inversion layer per unit area Q s : total of Q n Q sc : charge in surface depletion region per unit area  we can obtain Q n Refer fig. 16.6(c)

Conductivity of the channel at y: Channel conductance (constant mobility) : Channel resistance of an elemental section by: Voltage drop across the elemental section: I D independent of y

Figure Idealized drain characteristics of a MOSFET. For V D  V Dsat, the drain current remains constant.  For a given V G : I D increases linearly with V D then saturated  The dashed line : locus of the drain voltage V Dsat ( I D approach a max value)

Consider linear and saturation regions (for small V D ) for Threshold voltage V T : Channel conductance g D : Transconductance g m :

 Pinch-off point : V D increased to a point that charge Q n (y) in the inversion layer at y=L  number of mobile ē at the drain are reduced drastically  At this point V D & I D  V Dsat & I Dsat  V D > V Dsat  saturation region

TYPES OF MOSFET Cross section, output, and transfer characteristics of four types of MOSFETs.

TRESHOLD VOLTAGE Figure Calculated threshold voltage of n- channel (V Tn ) and p-channel (V Tp ) MOSFETs as a function of impurity concentration, for devices with n +-, p + – polysilicon, and mid-gap work function gates assuming zero fixed charge. The thickness of the gate oxide is 5 nm. NMOS, n-channel MOSFET; PMOS, p-channel MOSFET.

 MOSFET applied in the semiconductor industry for : a) VLSI Circuits b) Memory Devices ( DRAM, SRAM, Nonvolatile Memory) c) CMOS Digital Circuit d) Microprocessors  Advantages of MOSFET : a) In CMOS, perfect zero current when input switch off. Good logic ‘ 1 ’ and logic ‘ 0 ’ condition. b) Ability to scale down in size. (Channel length, width, area) c) Ability to control threshold voltage when device shrink. Quick switching. d) Oxide layer between gate and channel prevent DC flow – Power Consumption. e) Low power consumption allow more components per chip surface area. MOSFET APPLICATION

DISADVANTAGES OF MOSFET  Reduces V T makes MOSFET could not switched off – weak inversion layer.  Interconnect capacitance between wires – device miniature reduces.  Heat production impact – shrink device size, increasing device quantity.  Thin oxide requirement – gate oxide tunneling leakage problem.  Increased process fabrication steps – complex circuit design.