EE207: Digital Systems I, Semester I 2003/2004

Slides:



Advertisements
Similar presentations
Digital Design: Combinational Logic Blocks
Advertisements

Overview Programmable Implementation Technologies (section 6.8)
Documentation Standards
CS370 – Spring 2003 Programmable Logic Devices PALs/PLAs.
Programmable Logic PAL, PLA.
111 Basic Circuit Elements n Standard TTL Small-Scale Integration: 1 chip = 2-8 gates n Requires numerous chips to build interesting circuits n Alternative:
1 KU College of Engineering Elec 204: Digital Systems Design Lecture 9 Programmable Configurations Read Only Memory (ROM) – –a fixed array of AND gates.
Digital Logic Design Lecture 21. Announcements Homework 7 due on Thursday, 11/13 Recitation quiz on Monday on material from Lectures 21,22.
Combinational Logic Design
CPEN Digital System Design
1 Buffers Buffer:  Doesn’t change the input.  Only amplifies. in out EN.
Documentation Standards Programmable Logic Devices Decoders
Parity. 2 Datasheets TTL:  CMOS: 
Memory and Programmable Logic
EE365 Adv. Digital Circuit Design Clarkson University Lecture #7 Intro to MSI PLDs and Decoders.
CSCE 211: Digital Logic Design Chin-Tser Huang University of South Carolina.
Chapter # 4: Programmable and Steering Logic Section 4.1
Multiplexers, Decoders, and Programmable Logic Devices
CENG 241 Digital Design 1 Lecture 12
PLAs Programmable Logic Arrays
CS 151 Digital Systems Design Lecture 31 Read Only Memory (ROM)
Charles Kime & Thomas Kaminski © 2004 Pearson Education, Inc. Terms of Use (Hyperlinks are active in View Show mode) Terms of Use Lecture 13 – Programmable.
Figure to-1 Multiplexer and Switch Analog
Introduction to Digital Logic Design Appendix A of CO&A Dr. Farag
Programmable Logic Devices, Threshold Logic
Random-Access Memory (RAM)
Dr. Ahmed El-Bialy, Dr. Sahar Fawzy Combinational Circuits Dr. Ahmed El-Bialy Dr. Sahar Fawzy.
Memory and Programmable Logic Dr. Ashraf Armoush © 2010 Dr. Ashraf Armoush.
Unit 9 Multiplexers, Decoders, and Programmable Logic Devices Ku-Yaw Chang Assistant Professor, Department of Computer Science.
ROM & PLA Digital Logic And Computer Design
Lecture 30 Read Only Memory (ROM)
1 Lecture #10 EGR 277 – Digital Logic Multiplexers (Data Selectors) A multiplexer (MUX) is a device that allows several low-speed signals to be sent over.
1 Lecture 9 Demultiplexers Programmable Logic Devices  Programmable logic array (PLA)  Programmable array logic (PAL)
CHAPTER 9 MULTIPLEXERS, DECODERS, AND PROGRAMMABLE LOGIC DEVICES
Chapter 5 Designing Combinational Systems Tell me what you Have in Have out And want done in between Then I can build a program to do anything. Capt. Ed.
Chapter
1 CSE370, Lecture 11 Lecture 11  Logistics  HW3 due now  Lab4 goes on as normal next week  Tuesday review 6pm, place TBD  Last lecture  "Switching-network"
Chapter 0 - reVieW Combinational Logic Circuit, Combinational Logic Circuit, Propagation Delay, Propagation Delay, Programmable Logic. Programmable Logic.
Programmable Logic Devices (PLDs)
ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN Dr. Shi Dept. of Electrical and Computer Engineering.
Chapter # 4: Programmable Logic
1 Multiplexers (Data Selectors) A multiplexer (MUX) is a device that allows several low-speed signals to be sent over one high-speed output line. “Select.
CSET 4650 Field Programmable Logic Devices
Programmable logic devices. CS Digital LogicProgrammable Logic Device2 Outline PLAs PALs ROMs.
Complex Combinational Circuits Binary Adders Key to enterprise: Addition table also a truth table S i = C i 'A i B i ' + C i 'A i 'B i + C i A i 'B i '+
CSI-2111 Structure of Computers Ipage Combinational Circuits  Objectives : To recognize the principal types of combinational circuits  Adders.
CSCE 211: Digital Logic Design Chin-Tser Huang University of South Carolina.
Chapter 7 Memory and Programmable Logic
1 Combinational Logic Design.  A process with 5 steps Specification Formulation Optimization Technology mapping Verification  1 st three steps and last.
1 Chap 6. Memory and Programmable Devices Memory & Programmable Logic Device Definitions Memory –a collection of cells capable of storing binary.
CENG 241 Digital Design 1 Lecture 13
This chapter in the book includes: Objectives Study Guide
Digital Design Lecture 14
Chapter # 4: Programmable Logic
Lecture 9 Logistics Last lecture Today HW3 due Wednesday
This chapter in the book includes: Objectives Study Guide
ECE 434 Advanced Digital System L03
CPE/EE 422/522 Advanced Logic Design L02
CSCE 211: Digital Logic Design
CSCE 211: Digital Logic Design
Programmable Logic Devices (PLDs)
Unit -06 PLDs.
Princess Sumaya University
Lecture 11 Logistics Last lecture Today HW3 due now
CSCE 211: Digital Logic Design
CSCE 211: Digital Logic Design
Overview Last lecture Timing; Hazards/glitches
FIGURE 5-1 MOS Transistor, Symbols, and Switch Models
Presentation transcript:

EE207: Digital Systems I, Semester I 2003/2004 25-Apr-17 EE207: Digital Systems I, Semester I 2003/2004 CHAPTER 6-i: Programmable Logic Devices (PLDs) Chapter 6-i: Programmable Logic Devices (Sections 6.5 -- 6-8)

Chapter 6-i: Programmable Logic Devices (6.5 -- 6-8) Overview Three-State Buffers Programmable Logic Technologies Read-Only Memory (ROM) Programmable Logic Arrays (PLAs) Programmable Array Logic (PAL) 25-Apr-1725-Apr-17 Chapter 6-i: Programmable Logic Devices (6.5 -- 6-8)

Chapter 6-i: Programmable Logic Devices (6.5 -- 6-8) Three-State Buffers Buffer output has 3 states: 0, 1, Z Z stands for High-Impedance  Open circuit EN = 0  out = Z (open circuit) EN = 1  out = in (regular buffer) EN in out X Z 1 EN in out 25-Apr-1725-Apr-17 Chapter 6-i: Programmable Logic Devices (6.5 -- 6-8)

Three-state buffer(BUF)/inverter(INV) symbols EN EN in out in out 3-state BUF, EN high 3-state INV, EN high EN EN in out in out 3-state BUF, EN low 3-state INV, EN low 25-Apr-1725-Apr-17 Chapter 6-i: Programmable Logic Devices (6.5 -- 6-8)

Multiplexed output lines using three-state buffers Assume an output line that can receive data from either a system (circuit) A or a system B. A If A = B  out = A = B If A  B  a large enough current can be created, that causes excessive heating and could damage the circuit. out B wired logic 25-Apr-1725-Apr-17 Chapter 6-i: Programmable Logic Devices (6.5 -- 6-8)

Multiplexed output lines using three-state buffers (cont.) Solution: S A B ENA ENB out 1 A B S out 1 A B out ENA ENB S A B 25-Apr-1725-Apr-17 Chapter 6-i: Programmable Logic Devices (6.5 -- 6-8)

Programmable Logic Devices (PLDs) Standard logic devices that can be programmed to implement any combinational logic circuit. Standard  of regular structure Programmed  refers to a hardware process used to specify the logic that a PLD implements 25-Apr-1725-Apr-17 Chapter 6-i: Programmable Logic Devices (6.5 -- 6-8)

One major difference! Gate Symbols . . . . . . Conventional AND gate symbol Array Logic OR gate symbol One major difference! a b c F = 0 a F b c F = a.c F = a.b.c 25-Apr-1725-Apr-17 Chapter 6-i: Programmable Logic Devices (6.5 -- 6-8)

Read-Only Memory (ROM) Stores binary information permanently Non-Volatile (info is kept even when power is turned off) k inputs = specify the # of addresses available n outputs = specify the size of data ROM 2k x n k m Block Diagram 25-Apr-1725-Apr-17 Chapter 6-i: Programmable Logic Devices (6.5 -- 6-8)

Read-Only Memory (cont.) Address 8x4 ROM Example: k=3, n=4 There are 23=8 available addresses 4-bits are stored in each address 1 2 3 4 5 6 7 3 4 25-Apr-1725-Apr-17 Chapter 6-i: Programmable Logic Devices (6.5 -- 6-8)

ROM construction: Example of an 25x8 ROM Use a 5-to-32 decoder to generate the 32 addresses. Use 8 OR gates, each can be programmed to be driven by any of the decoder outputs. Programmable logic. # of interconnections is 25x8 25-Apr-1725-Apr-17 Chapter 6-i: Programmable Logic Devices (6.5 -- 6-8)

Programming the ROM, i.e. load desired data at specified addresses (in decimal) 1 2 3 28 29 30 31 ROM addresses ROM data 25-Apr-1725-Apr-17 Chapter 6-i: Programmable Logic Devices (6.5 -- 6-8)

Programming the ROM (cont.) Example: Let I0I1I3I4 = 00010 (address 2). Then, output 2 of the decoder will be 1, the remaining outputs will be 0, and ROM output becomes A7A6A5A4A3A2A1A0 = 11000101. 25-Apr-1725-Apr-17 Chapter 6-i: Programmable Logic Devices (6.5 -- 6-8)

ROM-based circuit implementation Given a 2kxn ROM, we can implement ANY combinational circuit with at most k inputs and at most n outputs. Why? k-to-2k decoder will generate all 2k possible minterms Each of the OR gates must implement a m() Each m() can be programmed 25-Apr-1725-Apr-17 Chapter 6-i: Programmable Logic Devices (6.5 -- 6-8)

Chapter 6-i: Programmable Logic Devices (6.5 -- 6-8) Example Find a ROM-based circuit implementation for: f(a,b,c) = a’b’ + abc g(a,b,c) = a’b’c’ + ab + bc h(a,b,c) = a’b’ + c Solution: Express f(), g(), and h() in m() format (use truth tables) Program the ROM based on the 3 m()’s 25-Apr-1725-Apr-17 Chapter 6-i: Programmable Logic Devices (6.5 -- 6-8)

Chapter 6-i: Programmable Logic Devices (6.5 -- 6-8) Example (cont.) There are 3 inputs and 3 outputs, thus we need a 8x3 ROM block. f = m(0, 1, 7) g = m(0, 3, 6, 7) h = m(0, 1, 3, 5, 7) a 1 2 3 4 5 6 7 3-to-8 decoder b c f g h 25-Apr-1725-Apr-17 Chapter 6-i: Programmable Logic Devices (6.5 -- 6-8)

Programmable Logic Arrays (PLAs) Similar concept as in ROM, except that a PLA does not necessarily generate all possible minterms (ie. the decoder is not used). More precisely, in PLAs both the AND and OR arrays can be programmed (in ROM, the AND array is fixed – the decoder – and only the OR array can be programmed). 25-Apr-1725-Apr-17 Chapter 6-i: Programmable Logic Devices (6.5 -- 6-8)

Chapter 6-i: Programmable Logic Devices (6.5 -- 6-8) PLA Example f(a,b,c) = a’b’ + abc g(a,b,c) = a’b’c’ + ab + bc h(a,b,c) = c PLAs can be more compact implementations than ROMs, since they can benefit from minimizing the number of products required to implement a function AND array OR array 25-Apr-1725-Apr-17 Chapter 6-i: Programmable Logic Devices (6.5 -- 6-8)

Chapter 6-i: Programmable Logic Devices (6.5 -- 6-8) Another PLA Example Find a PLA-based circuit implementation for: F1(A,B,C) = AB’ + AC + A’BC’ F2(A,B,C) = (AC + BC)’ Solution: 3 inputs, 2 outputs ( 2 OR gates) 4 distinct product terms (4 AND gates) Use XOR array to find complements 25-Apr-1725-Apr-17 Chapter 6-i: Programmable Logic Devices (6.5 -- 6-8)

Chapter 6-i: Programmable Logic Devices (6.5 -- 6-8) PLA Example (cont.) XOR array F2’ F1 25-Apr-1725-Apr-17 Chapter 6-i: Programmable Logic Devices (6.5 -- 6-8)

PLA Example (cont.) Tabular Form Specification of interconnection programming F1 = AB’+AC+A’BC’ F2 = AC+BC 25-Apr-1725-Apr-17 Chapter 6-i: Programmable Logic Devices (6.5 -- 6-8)

Determining the size of a PLA Given: n inputs p product terms m outputs PLA size is: Gates: n INV (and maybe n BUF) + p ANDs + m ORs + m XORs Programmable interconnections: 2np + pm + 2m 25-Apr-1725-Apr-17 Chapter 6-i: Programmable Logic Devices (6.5 -- 6-8)

Programmable Array Logic (PAL) OR plane (array) is fixed, AND plane can be programmed Less flexible than PLA # of product terms available per function (OR outputs) is limited 25-Apr-1725-Apr-17 Chapter 6-i: Programmable Logic Devices (6.5 -- 6-8)

Chapter 6-i: Programmable Logic Devices (6.5 -- 6-8) PAL Example inputs 1st output section 2nd output section Only functions with at most four products can be implemented 3rd output section 4th output section 25-Apr-1725-Apr-17 Chapter 6-i: Programmable Logic Devices (6.5 -- 6-8)

PAL-based circuit implementation W = ABC + CD X = ABC + ACD + ACD + BCD Y = ACD + ACD + ABD 25-Apr-1725-Apr-17 Chapter 6-i: Programmable Logic Devices (6.5 -- 6-8)

Can we implement more complex functions using PALs? Yes, by allowing output lines to also serve as input lines in the AND plane. 25-Apr-1725-Apr-17 Chapter 6-i: Programmable Logic Devices (6.5 -- 6-8)

Chapter 6-i: Programmable Logic Devices (6.5 -- 6-8) Example Implement the combinational circuit described by the following equations, using a PAL with 4 inputs, 4 outputs, and 3-wide AND-OR structure. W(A,B,C,D) = m(2,12,13) X(A,B,C,D) = m(7,8,9,10,11,12,13,14,15) Y(A,B,C,D) = m(0,2,3,4,5,6,7,8,10,11,15) Z(A,B,C,D) = m(1,2,8,12,13) 25-Apr-1725-Apr-17 Chapter 6-i: Programmable Logic Devices (6.5 -- 6-8)

Chapter 6-i: Programmable Logic Devices (6.5 -- 6-8) Example (cont.) Use function simplification techniques to derive: W = ABC’+A’B’CD’ X = A+BCD Y=A’B+CD+B’D’ Z=ABC’+A’B’CD’+AC’D’+A’B’C’D = W + AC’D’+A’B’C’D 25-Apr-1725-Apr-17 Chapter 6-i: Programmable Logic Devices (6.5 -- 6-8)

Chapter 6-i: Programmable Logic Devices (6.5 -- 6-8) Example (cont.) 25-Apr-1725-Apr-17 Chapter 6-i: Programmable Logic Devices (6.5 -- 6-8)

Example (cont.) Tabular Form Specification of interconnection programming 25-Apr-1725-Apr-17 Chapter 6-i: Programmable Logic Devices (6.5 -- 6-8)