Carlos Mariñas, IFIC, CSIC-UVEG DEPFET Technology for future colliders Carlos Mariñas IFIC-Valencia (Spain) 1 LCPS09, Ambleside.

Slides:



Advertisements
Similar presentations
Radiation damage in silicon sensors
Advertisements

Kailua-Kona, Marcel Trimpl, Bonn University Readout Concept for Future Pixel Detectors based on Current Mode Signal Processing Marcel Trimpl.
DEPFET detectors for future colliders. Activities at IFIC, Valencia Terceras Jornadas sobre la Participación Española en los Futuros Aceleradores Lineales.
R. H. Richter et al - VERTEX 2002 Kailua-Kona, DEPFET sensors for a LC vertex detector (1) »DEP(leted)F(ield)E(ffect)T(ransistor) operation.
SPiDeR  First beam test results of the FORTIS sensor FORTIS 4T MAPS Deep PWell Testbeam results CHERWELL Summary J.J. Velthuis.
Calibration, simulation and test-beam characterisation of Timepix hybrid-pixel readout assemblies with ultra-thin sensors International Workshop on Future.
Presentation at the PRC review, , DESY Status of DEPFET pixel detectors for ILC Peter Fischer for the DEPFET collaboration Bonn University:R.
Why silicon detectors? Main characteristics of silicon detectors: Small band gap (E g = 1.12 V)  good resolution in the deposited energy  3.6 eV of deposited.
Hamburg, Marcel Trimpl, Bonn University A DEPFET pixel-based Vertexdetector for TESLA 55. PRC -MeetingHamburg, Mai 2003 M. Trimpl University.
DEPFET Electronics Ivan Peric, Mannheim University.
Monolithic Pixels R&D at LBNL Devis Contarato Lawrence Berkeley National Laboratory International Linear Collider Workshop, LCWS 2007 DESY Hamburg, May.
P. Colas on behalf of LCTPC. 2 detector concepts : ILD and SiD SiD: all-silicon ILD: TPC for the central tracking 15/05/2012P. Colas - LCTPC2 Both based.
IFIC projects for the ILC IFIC – Valencia J. Fuster, C. Lacasta, P. Modesto, M. Vos, C. Alabau, A. Faus- Golfe, J. Resta, I. Carbonell IFIC - INSTITUTO.
ECFA ILC Workshop, November 2005, ViennaLadislav Andricek, MPI für Physik, HLL DEPFET Project Status - in Summary Technology development thinning technology.
ILC VXD Review, Fermilab, October 2007 Ariane Frey, MPI für Physik DEPFET Vertex Detector Simulation and Physics Performance Ariane Frey for the DEPFET.
1 Realistic top Quark Reconstruction for Vertex Detector Optimisation Talini Pinto Jayawardena (RAL) Kristian Harder (RAL) LCFI Collaboration Meeting 23/09/08.
Light Calibration System (LCS) Temperature & Voltage Dependence Option 2: Optical system Option 2: LED driver Calibration of the Hadronic Calorimeter Prototype.
Vertex05, 8/11/05Jaap Velthuis, Bonn University DEPFET Status DEPFET Principle Readout modes Projects: –XEUS –WIMS –ILC ILC Testbeam results Summary &
Fully depleted MAPS: Pegasus and MIMOSA 33 Maciej Kachel, Wojciech Duliński PICSEL group, IPHC Strasbourg 1 For low energy X-ray applications.
Tobias Haas DESY 8 November 2005 A Pixel Telescope for Detector R&D for an ILC Introduction: EUDET Introduction: EUDET First general ideas (with some interludes)
Fine Pixel CCD for ILC Vertex Detector ‘08 7/31 Y. Takubo (Tohoku U.) for ILC-FPCCD vertex group ILC vertex detector Fine Pixel CCD (FPCCD) Test-sample.
ILC VXD Review, Fermilab, October 23, 2007 Hans-Günther Moser, MPI für Physik DEPFET Devices Hans-Gunther Moser for the DEPFET Collaboration (
Monolithic Active Pixel Sensors (MAPS) News from the MIMOSA serie Pierre Lutz (Saclay)
Technology Overview or Challenges of Future High Energy Particle Detection Tomasz Hemperek
LCWS08, Chicago, November 2008 Ladislav Andricek, MPI fuer Physik, HLL 1 DEPFET Active Pixel Sensors - Status and Plans - Ladislav Andricek for the DEPFET.
1 Wojciech Dulinski Pixel 2000, Genova, Italy Pixel Sensors for Single Photon Detection Contents - Idea and basic architecture.
H.-G. Moser Max-Planck-Institut fuer Physik 1 st open meeting SuperBelle KEK Summary of PXD Session 1 Status of CAPSH. Hoedlmoser (Video)
Fig. 1: Cross section of a circular DEPMOS- FET pixel cell. Charges collected in the “in- ternal gate’ modulate the transistor current. DEPMOSFET team,
Prague, Marcel Trimpl, Bonn University DEPFET-Readout Concept for TESLA based on Current Mode Signal Processing Markus Schumacher on behalf.
The Belle II DEPFET Pixel Detector
Custom mechanical sensor support (left and below) allows up to six sensors to be stacked at precise positions relative to each other in beam The e+e- international.
Leo Greiner IPHC1 STAR Vertex Detector Environment with Implications for Design and Testing.
SuperKEKB 3nd open meeting July 7-9, 2009 Hans-Günther Moser MPI für Physik Sensor and ASIC R&D Sensor Prototype Production: running, ASICs: Switcher,
TRACKING AND VERTEXING SUMMARY Suyong Choi Korea University.
Design and Technology of DEPFET Active Pixel Sensors for Future e+e- Linear Collider Experiments G. Lutz a, L. Andricek a, P. Fischer b, K. Heinzinger.
The ultralight DEPFET Pixel Detector of the Belle II Experiment Florian Lütticke On behalf of the DEPFET Collaboration th.
Position Sensitive Detector Conference, September 2005, LiverpoolGerhard Lutz 1 (Semiconductor) Pixel Detectors for charged particles (and other applications)
Timepix test-beam results and Sensor Production Status Mathieu Benoit, PH-LCD.
Daniel EsperanteIFIC – 13 Jun 2012 Electrónica para nuevos detectores de Belle-II e ILC.
Upgrade with Silicon Vertex Tracker Rachid Nouicer Brookhaven National Laboratory (BNL) For the PHENIX Collaboration Stripixel VTX Review October 1, 2008.
Particle Physics School Colloquium, May C. Koffmane, MPI für Physik, HLL, TU Berlin  DEPFETs at ILC and Belle II  Module Concept  results with.
Infinipix DEPFETs (for the ATHENA project) Seeon, May 2014 Alexander Bähr MPE 1 Alexander Bähr Max-Planck-Institute f. extraterrestr. Physics.
The BTeV Pixel Detector and Trigger System Simon Kwan Fermilab P.O. Box 500, Batavia, IL 60510, USA BEACH2002, June 29, 2002 Vancouver, Canada.
Highlights from the VTX session Marc Winter & Massimo Caccia R&D reports: – DEPFET (M. Trimpl) – CCD (S. Hillert) – UK-CMOS (J.Velthuis) – Continental-CMOS.
Simulation of a DEPFET Pixel Detector IMPRS Young Scientist Workshop July, 26 – 30, 2010 Christian Koffmane 1,2 1 Max-Planck-Institut für Physik, München.
1 Characterization of Pilot Run Modules for the Belle II Pixel Detector Felix Müller Max-Planck-Institut für Physik IMPRS Young Scientist Workshop Ringberg.
Low Mass, Radiation Hard Vertex Detectors R. Lipton, Fermilab Future experiments will require pixelated vertex detectors with radiation hardness superior.
Pixel Sensors for the Mu3e Detector Dirk Wiedner on behalf of Mu3e February Dirk Wiedner PSI 2/15.
TILC08, Sendai, March DEPFET Active Pixel Sensors for the ILC Marcel Vos for the DEPFET Collaboration (
H.-G. Moser Max-Planck-Institut for Physics, Munich Vertex07 Lake Placid, NY 9/25/2007 DEPFET Active Pixel Detectors H.-G. Moser on behalf of the DEPFET.
Clear Performance and Demonstration of a novel Clear Concept for DEPFET Active Pixel Sensors Stefan Rummel Max-Planck-Institut für Physik – Halbleiterlabor.
Radiation Hardness of DEPFET Pixel Sensors Andreas Ritter IMPRS - Young Scientist Workshop 2010, Ringberg 1.
1 Test of Electrical Multi-Chip Module for Belle II Pixel Detector DPG-Frühjahrstagung der Teilchenphysik, Wuppertal 2015, T43.1 Belle II Experiment DEPFET.
1 First large DEPFET pixel modules for the Belle II Pixel Detector Felix Müller Max-Planck-Institut für Physik DPG-Frühjahrstagung der Teilchenphysik,
Testsystems PXD6 - testing plans overview - by Jelena NINKOVIC Hybrid Boards for PXD6 - by Christian KOFFMANE Source measurements on DEPFET matrices using.
 Silicon Vertex Detector Upgrade for the Belle II Experiment
Silicon Pixel Detector for the PHENIX experiment at the BNL RHIC
DEPFET Active Pixel Sensors (for the ILC)
Silicon Lab Bonn Physikalisches Institut Universität Bonn
The Belle II Vertex Pixel Detector (PXD)
Rita De Masi IPHC-Strasbourg on behalf of the IPHC-IRFU collaboration
Lars Reuen, 7th Conference on Position Sensitive Devices, Liverpool
Test Beam Measurements october – november, 2016
SVT detector electronics
Yasuhiro Sugimoto KEK 17 R&D status of FPCCD VTX Yasuhiro Sugimoto KEK 17
TCAD Simulation and test setup For CMOS Pixel Sensor based on a 0
Beam Test Results for the CMS Forward Pixel Detector
SVT detector electronics
R&D of CMOS pixel Shandong University
Why silicon detectors? Main characteristics of silicon detectors:
Presentation transcript:

Carlos Mariñas, IFIC, CSIC-UVEG DEPFET Technology for future colliders Carlos Mariñas IFIC-Valencia (Spain) 1 LCPS09, Ambleside

Carlos Mariñas, IFIC, CSIC-UVEG DEPFET (DEpleted P-channel Field Effect Transistor): Technology invented by J. Kemmer & G. Lutz, 1987  J. Kemmer and G. Lutz: ''New semiconductor detector concepts'', Nucl. Instr. & Meth. A 253 (1987) DEPFET (DEpleted P-channel Field Effect Transistor): Technology invented by J. Kemmer & G. Lutz, 1987  J. Kemmer and G. Lutz: ''New semiconductor detector concepts'', Nucl. Instr. & Meth. A 253 (1987) Several different applications for Astrophysics and Particle Physics:  XEUS : Future european X-ray observatory to investigate the Early Evolution Stages of the Universe (early black holes, evolution of galaxies…)  BepiColombo : ESA project to Mercury to investigate the origin and evolution of the planet  X-FEL  ILC  BELLE-II → Technology chosen for the new Vertex Detector Several different applications for Astrophysics and Particle Physics:  XEUS : Future european X-ray observatory to investigate the Early Evolution Stages of the Universe (early black holes, evolution of galaxies…)  BepiColombo : ESA project to Mercury to investigate the origin and evolution of the planet  X-FEL  ILC  BELLE-II → Technology chosen for the new Vertex Detector LCPS09, Ambleside 2

Why this technology? Carlos Mariñas, IFIC, CSIC-UVEG  Vertexing in future colliders requires excellent vertex reconstruction and efficient heavy quark flavour tagging See Prof. Ch. Damerell’s talk  Vertexing in future colliders requires excellent vertex reconstruction and efficient heavy quark flavour tagging See Prof. Ch. Damerell’s talk  This requirements impose unprecedented constraints on the detector: High granularity to cope with the high density of tracks in the jets and the background High spatial resolution per layer <4  m (pixel size of 25x25  m 2 ) Fast read-out Low material budget: <0.1%X 0 /layer (~100  m of Si) Low power consumption  This requirements impose unprecedented constraints on the detector: High granularity to cope with the high density of tracks in the jets and the background High spatial resolution per layer <4  m (pixel size of 25x25  m 2 ) Fast read-out Low material budget: <0.1%X 0 /layer (~100  m of Si) Low power consumption DEPFET  Measurements made on realistic DEPFET prototypes have demonstrated that the concept is one of the principal candidates to meet these challenging requirements DEPFET  Measurements made on realistic DEPFET prototypes have demonstrated that the concept is one of the principal candidates to meet these challenging requirements LCPS09, Ambleside 3

The DEPFET principle Carlos Mariñas, IFIC, CSIC-UVEG  Each pixel is a p-channel FET on a completely depleted bulk (sideward depletion). Charge is collected by drift  A deep n-implant creates a potential minimum for electrons under the gate (internal gate)  Each pixel is a p-channel FET on a completely depleted bulk (sideward depletion). Charge is collected by drift  A deep n-implant creates a potential minimum for electrons under the gate (internal gate) o Small pixel size ~25μm o r/o per row ~50ns (20MHz) (drain) Fully depleted bulk o Noise≈100e -  Small capacitance and first in-pixel amplification o Thin Detectors≈50μm o Small pixel size ~25μm o r/o per row ~50ns (20MHz) (drain) Fully depleted bulk o Noise≈100e -  Small capacitance and first in-pixel amplification o Thin Detectors≈50μm  Signal electrons accumulate in the internal gate and modulate the transistor current (g q ≈500pA/e - )  Accumulated charge can be removed by a clear contact  Signal electrons accumulate in the internal gate and modulate the transistor current (g q ≈500pA/e - )  Accumulated charge can be removed by a clear contact GOAL  Internal amplification  Low power consumption: Readout on demand (Sensitive all the time, even in OFF state)  Internal amplification  Low power consumption: Readout on demand (Sensitive all the time, even in OFF state) LCPS09, Ambleside 4

p+ n+ rear contact drainbulksource p s y m m e t r y a x i s n+ n internal gate top gateclear n - n+ p+ FET-Transistor integrated in every pixel (first amplification) Electrons are collected in „internal gate“ and modulate the transistor-current Signal charge removed via clear contact MIP internal Gate Potential distribution: Drain Source Backcontact [TeSCA-Simulation] ~1µm 50 µm DEPFET-Principle of Operation Carlos Mariñas, IFIC, CSIC-UVEG LCPS09, Ambleside 5

p+ n+ rear contact drainbulksource p s y m m e t r y a x i s n+ n internal gate top gateclear n - n+ p+ FET-Transistor integrated in every pixel (first amplification) Electrons are collected in „internal gate“ and modulate the transistor-current Signal charge removed via clear contact internal Gate Potential distribution: Drain Source Backcontact [TeSCA-Simulation] ~1µm 50 µm DEPFET-Principle of Operation Carlos Mariñas, IFIC, CSIC-UVEG 0V +20V 0V LCPS09, Ambleside

ILC prototype system Carlos Mariñas, IFIC, CSIC-UVEG Hybrid Board DEPFET 64x256 matrix Readout chip (CURO) Steering chips (Switchers) Hybrid Board DEPFET 64x256 matrix Readout chip (CURO) Steering chips (Switchers) Readout Board 16 bit ADCs  Digitization XILINX FPGA  Chip config. and synchronization during DAQ 128 kB RAM  Data storage USB 2.0 board  PC comm. Readout Board 16 bit ADCs  Digitization XILINX FPGA  Chip config. and synchronization during DAQ 128 kB RAM  Data storage USB 2.0 board  PC comm. Protection Board Regulators Protection Board Regulators LCPS09, Ambleside 6

Hybrid board Carlos Mariñas, IFIC, CSIC-UVEG DEPFET Matrix 64x128 pixels Several pixel sizes, implants, geometries DEPFET Matrix 64x128 pixels Several pixel sizes, implants, geometries Switchers: Steering chips Gate: Select row Clear: Clear signal Switchers: Steering chips Gate: Select row Clear: Clear signal CURO: 128 channels CUrrent Read Out Subtraction of I ped from I ped +I sig CURO: 128 channels CUrrent Read Out Subtraction of I ped from I ped +I sig LCPS09, Ambleside 7

Operation mode: Row wise readout Carlos Mariñas, IFIC, CSIC-UVEG Row wise r/o (Rolling Shutter)  Select row with external gate, read current, clear DEPFET, read current again  The difference is the signal  Low power consumption: Only one row active at a time; Readout on demand (Sensitive all the time, even in OFF state)  Two different auxiliary chips needed (Switchers)  Limited frame rate Row wise r/o (Rolling Shutter)  Select row with external gate, read current, clear DEPFET, read current again  The difference is the signal  Low power consumption: Only one row active at a time; Readout on demand (Sensitive all the time, even in OFF state)  Two different auxiliary chips needed (Switchers)  Limited frame rate DEPFET-matrixGate SWClear SW Drain Enable row – Read current (I sig + I ped ) – Clear – Read current (I ped ), Subtract – Move to next row LCPS09, Ambleside 8

DEPFET Concept for a half ILC module Carlos Mariñas, IFIC, CSIC-UVEG  10 and 25 cm long ladders read out at the ends  24 micron pixel  design goal 0.1% X 0 per layer in the sensitive region LCPS09, Ambleside 9

Thinning : mechanical samples Carlos Mariñas, IFIC, CSIC-UVEG 6” wafer with diodes and large mechanical samples Thinned area: 10cm x 1.2 cm (ILC vertex detector dummy) Possibility to structure handling frame (reduce material, keep stiffness) LCPS09, Ambleside 10

Telescope: 5 DEPFET planes 32x24 μm 2 CCG 450 μ m thick Telescope: 5 DEPFET planes 32x24 μm 2 CCG 450 μ m thick DEPFET achievements: Test Beam Setup BEAM 120 GeV ∏ DUT: 1 DEPFET modules Various pixel sizes 450 μ m thick DUT: 1 DEPFET modules Various pixel sizes 450 μ m thick Scintillators: 1 Big “Beam finder” 1 Finger “Beam allignment” Triggering Scintillators: 1 Big “Beam finder” 1 Finger “Beam allignment” Triggering Carlos Mariñas, IFIC, CSIC-UVEG Trigger Synchronization via TLU (Trigger Logic Unit) x y z LCPS09, Ambleside 11

Test Beam Setup Carlos Mariñas, IFIC, CSIC-UVEG General view 6 Modules at once 1 rotating module General view 6 Modules at once 1 rotating module LCPS09, Ambleside 12

My work Carlos Mariñas, IFIC, CSIC-UVEG  Calibration/optimization of different generations of matrices: PXD4-Clocked Cleargate. 128x64 pixels PXD5-Common Cleargate. 128x64 pixels PXD5-Capacitative Coupled Cleargate. 256x64 pixels  Calibration/optimization of different generations of matrices: PXD4-Clocked Cleargate. 128x64 pixels PXD5-Common Cleargate. 128x64 pixels PXD5-Capacitative Coupled Cleargate. 256x64 pixels LCPS09, Ambleside 13

Carlos Mariñas, IFIC, CSIC-UVEG  Test Beam Data analysis (SNR, Residuals, Charge collection uniformity)  Test Beam Data analysis (SNR, Residuals, Charge collection uniformity) Preliminary ResY=1.34 μm 3x3 cluster signal σ≈4% LCPS09, Ambleside 14

Carlos Mariñas, IFIC, CSIC-UVEG Natural convection  Mechanical/Thermal measurements and simulation (Finite Element An.) Natural frequencies, self weigth bowing, deformations Conduction, convection, thermal stress Power cycling Thermal characterization of different materials for cooling (Al, Cu, TPG)  Mechanical/Thermal measurements and simulation (Finite Element An.) Natural frequencies, self weigth bowing, deformations Conduction, convection, thermal stress Power cycling Thermal characterization of different materials for cooling (Al, Cu, TPG) LCPS09, Ambleside 15

Thank you very much! Carlos Mariñas, IFIC, CSIC-UVEG The LHC is not the end… but just the beginning! Belle-II, SuperB, ILC, CLIC… LCPS09, Ambleside 16