P. Lechner IWORID 2002 Peter Lechner MPI Halbleiterlabor & PNSensor GmbH 1 X-ray imaging spectrometers in present and future satellite missions.

Slides:



Advertisements
Similar presentations
Radiation damage in silicon sensors
Advertisements

X-ray Imaging Spectrometers (XIS) of Astro-E2 Hironori Matsumoto (Kyoto University) and the XIS team 1. Overview Astro-E2 is the fifth Japanese X-ray Astronomy.
X-Ray Astronomy Lab X-rays Why look for X-rays? –High temperatures –Atomic lines –Non-thermal processes X-ray detectors X-ray telescopes The Lab.
ASTROSAT LAXPC Biswajit Paul Raman Research Institute, Bangalore On behalf of the LAXPC Team.
The HEROES Balloon- borne Hard X-ray Telescope Colleen A. Wilson-Hodge, J. Gaskin, S. Christe, A. Shih, K. Kilaru, D.A. Swartz, A. F. Tennant, B. Ramsey.
Readout ASIC Development VERITAS II Garching, 28 January 2014 Matteo Porro.
CHARGE COUPLING TRUE CDS PIXEL PROCESSING True CDS CMOS pixel noise data 2.8 e- CMOS photon transfer.
Overview of XMM-Newton XMM-Newton carries three, co-aligned, densely-nested, grazing incidence telescopes, collectively providing unparalleled effective.
Astro-E2 and Japanese future space programs for high energy astrophysics Astro-E2 NeXT XEUS Small satellite programs Tadayasu Dotani (ISAS)
R. H. Richter et al - VERTEX 2002 Kailua-Kona, DEPFET sensors for a LC vertex detector (1) »DEP(leted)F(ield)E(ffect)T(ransistor) operation.
SOIPD Status e prospective for 2012 The SOImager2 is a monolithic pixel sensor produced by OKI in the 0.20 µm Fully Depleted- Silicon On Insulator (FD-SOI)
CXC Chandra X-ray Observatory Operations. CXC Overview 1. Mission and Observatory Description 2. Chandra Operations 3. Chandra X-ray Center Architecture.
SDW20051 Vincent Lapeyrère LESIA – Observatoire de Paris Calibration of flight model CCDs for CoRoT mission.
On-Orbit Adjustment Calculation for the Generation-X X-ray mirror Figure D. A. Schwartz, R. J. Brissenden, M. Elvis, G. Fabbiano, D. Jerius, M. Juda, P.
Chandra X-ray Center Martin Elvis Smithsonian Astrophysical Observatory Welcome to the 4 th Chandra – CIAO Workshop 20 – 22 May 2002.
Main detector types Multi Pixel Photon Counter (MPPC) and Charge Coupled Devices (CCDs) How does it work? 1. Photon hits a pixel producing electron hole.
Radio Emission from Masuda Sources New Jersey Institute of Technology Sung-Hong Park.
Generation-X telescope: Measurement of On-Orbit Adjustment Data Dan Schwartz, R. J. Brissenden, M. Elvis, G. Fabbiano, T. Gaetz, D. Jerius, M. Juda, P.
Jens Zimmermann, Forschungszentrum Jülich, ACAT 021 Class Separation and Parameter Estimation with Neural Nets for the XEUS Project Jens Zimmermann
Astronomical Observational Techniques and Instrumentation
X-ray Timing and Polarization mission & instrumentation DONG Yongwei Center for Particle Astrophysics Institute of High Energy Physics, Chinese Academy.
Chapter 6: The Tools of the Astronomer. Telescopes come in two general types Refractors use lenses to bend the light to a focus Reflectors use mirrors.
Presentation at the PRC review, , DESY Status of DEPFET pixel detectors for ILC Peter Fischer for the DEPFET collaboration Bonn University:R.
Hamburg, Marcel Trimpl, Bonn University A DEPFET pixel-based Vertexdetector for TESLA 55. PRC -MeetingHamburg, Mai 2003 M. Trimpl University.
MPI Halbleiterlabor  Otto-Hahn-Ring 6  München  The Halbleiterlabor is in the unique position to have a highly flexible production.
NASSP Masters 5003F - Computational Astronomy Lecture 19 EPIC background Event lists and selection The RGA Calibration quantities Exposure calculations.
X-ray CCD Detectors for Astronomy and Space Science
The Hard X-ray Modulation Telescope Mission
SRG 1 X-RAY Astronomy 2009, Bologna, 11 September, 2009 Spectrum-Roentgen-Gamma astrophysical project, current status Mikhail Pavlinsky (IKI, Moscow) on.
Silicon Sensor with Readout ASICs for EXAFS Spectroscopy Gianluigi De Geronimo, Paul O’Connor Microelectronics Group, Instrumentation Division, Brookhaven.
Semi-conductor Detectors HEP and Accelerators Geoffrey Taylor ARC Centre for Particle Physics at the Terascale (CoEPP) The University of Melbourne.
A TIGRE on the Moon Timing Italian Gamma Ray Experiment E. Costa, Y. Evangelista, M. Feroci, M. Rapisarda (*), P. Soffitta INAF – IASF Rome (*) ENEA Frascati.
ILC VXD Review, Fermilab, October 2007 Ariane Frey, MPI für Physik DEPFET Vertex Detector Simulation and Physics Performance Ariane Frey for the DEPFET.
Gamma-Ray Bursts observed with INTEGRAL and XMM- Newton Sinead McGlynn School of Physics University College Dublin.
19/02/09ARC Meeting, Colonster The Simbol-X mission and the investigation of hard X-rays from massive stars Michaël De Becker (Groupe d'AstroPhysique des.
Vertex05, 8/11/05Jaap Velthuis, Bonn University DEPFET Status DEPFET Principle Readout modes Projects: –XEUS –WIMS –ILC ILC Testbeam results Summary &
Fully depleted MAPS: Pegasus and MIMOSA 33 Maciej Kachel, Wojciech Duliński PICSEL group, IPHC Strasbourg 1 For low energy X-ray applications.
R. H. Richter - WHI Project Review Dec, 17th 2002 WHI - Project Review Halbleiterlabor (HLL) - Projects at HLL Overview (list of main projects)
Instrumental Development in Japan for Future Missions 1.Si strip detectors(GLAST) 2.Supermirror technology 3.New hard-X/  detectors 4.TES calorimeters.
Astronomical Institute University of Bern 31th IADC Meeting, April , 2013, ESOC, Darmstadt, Germany Improved Space Object Observation Techniques.
Development of CCDs for the SXI We have developed 2 different types of CCDs for the SXI in parallel.. *Advantage =>They are successfully employed for current.
A Whole New Hot Universe by XMM Newton Liz Puchnarewicz Mullard Space Science Laboratory University College, London
Technology Overview or Challenges of Future High Energy Particle Detection Tomasz Hemperek
1 Wojciech Dulinski Pixel 2000, Genova, Italy Pixel Sensors for Single Photon Detection Contents - Idea and basic architecture.
DEAR SDD --> SIDDHARTA
Fig. 1: Cross section of a circular DEPMOS- FET pixel cell. Charges collected in the “in- ternal gate’ modulate the transistor current. DEPMOSFET team,
SIDDHARTA future precision measurement of kaonic atoms at DA  NE Florin Sirghi LNF SPRING SCHOOL "Bruno Touschek" In Nuclear, Subnuclear and Astroparticle.
Astronomical Observational Techniques and Instrumentation
Prospects to Use Silicon Photomultipliers for the Astroparticle Physics Experiments EUSO and MAGIC A. Nepomuk Otte Max-Planck-Institut für Physik München.
Simbol–X workshopMay 14th, 2007 The Simbol-X Detector Payload P. Laurent CEA/Saclay & APC.
05/02/031 Next Generation Ground- based  -ray Telescopes Frank Krennrich April,
Contratto ASI/Luna Astrofisica delle Alte Energie.
Exploring an evidence of supermassive black hole binaries in AGN with MAXI Naoki Isobe (RIKEN, ) and the MAXI
Matteo Porro MPI Halbleiterlabor FEE 2006 Perugia Multichannel Time-Variant Readout Electronics of DePMOS based APS for the XEUS Wide Field.
MPI Semiconductor Laboratory, The XEUS Instrument Working Group, PNSensor The X-ray Evolving-Universe Spectroscopy (XEUS) mission is under study by the.
Design and Technology of DEPFET Active Pixel Sensors for Future e+e- Linear Collider Experiments G. Lutz a, L. Andricek a, P. Fischer b, K. Heinzinger.
Position Sensitive Detector Conference, September 2005, LiverpoolGerhard Lutz 1 (Semiconductor) Pixel Detectors for charged particles (and other applications)
Ay 191 Experiment Development of Hard X-ray Imaging Detectors J. Hong, B. Allen and J. Grindlay Hard X-rays (~5-600 keV) are direct probes of black holes:
Infinipix DEPFETs (for the ATHENA project) Seeon, May 2014 Alexander Bähr MPE 1 Alexander Bähr Max-Planck-Institute f. extraterrestr. Physics.
The Prime Focus Imaging Spectrograph for the Southern African Large Telescope: Operational Modes Chip Kobulnicky – Instrument Scientist, University of.
Søren Brandt & Margarita Hernanz On behalf of the WFM team Wide Field Monitor.
Clear Performance and Demonstration of a novel Clear Concept for DEPFET Active Pixel Sensors Stefan Rummel Max-Planck-Institut für Physik – Halbleiterlabor.
Development of Micro-Pore Optics at NAOC MPO research group X-ray Imaging Laboratory, NAOC Presented by Chen Zhang.
VCI 2016, Wien | February 18, 2016 The DEPFET Detector-Amplifier Structure for Spectroscopic Imaging in Astronomy and for Experiments at Free Electron.
N.Kimmel, the MPI Halbleiterlabor team and PNSensor References: H. Tsunemi et al., NIM A 421 (1999), H. Tsunemi et al., NIM A 436 (1999), Characterization.
Andrei Nomerotski 1 Andrei Nomerotski, University of Oxford Ringberg Workshop, 8 April 2008 Pixels with Internal Storage: ISIS by LCFI.
Fully Depleted Low Power CMOS Detectors
Onboard Instruments of ASTROSAT
SCIENTIFIC CMOS PIXELS
The Chandra X-Ray Observatory
Presentation transcript:

P. Lechner IWORID 2002 Peter Lechner MPI Halbleiterlabor & PNSensor GmbH 1 X-ray imaging spectrometers in present and future satellite missions

P. Lechner IWORID 2002 MPI Semiconductor Lab X-ray Astronomy pnCCDXMM-Newton Framestore pnCCDROSITA Active Pixel SensorXEUS Conclusion 100 % personally biased apologies! 1 X-ray imaging spectrometers in present and future satellite missions

P. Lechner IWORID 2002 MPI semiconductor laboratory common institution of the Max-Planck-Institutes for Physics and for Extraterrestrial Physics founded in scientists, engineers, technicians, students strip detectors for ALEPH/CERN development of novel detectors  high energy physics ALEPH, CERN HERA-B, DESY  astrophysics XMM-Newton, XEUS, ROSITA, MEGA, SVOM  related fields synchrotron radiation experiments  technology transfer Silicon Drift Detectors for X-ray spectroscopy industrial applications 2 MPI laboratory X-ray astronomy pnCCD framestore pnCCD active pixel sensor conclusion

P. Lechner IWORID 2002 pnCCD camera for XMM-Newton development of novel detectors  high energy physics ALEPH, CERN HERA-B, DESY  astrophysics XMM-Newton, XEUS, ROSITA, MEGA, SVOM  related fields synchrotron radiation experiments  technology transfer Silicon Drift Detectors for X-ray spectroscopy industrial applications 2 MPI laboratory X-ray astronomy pnCCD framestore pnCCD active pixel sensor conclusion MPI semiconductor laboratory common institution of the Max-Planck-Institutes for Physics and for Extraterrestrial Physics founded in scientists, engineers, technicians, students

P. Lechner IWORID 2002 Silicon Drift Detector Array for EXAFS, X-ray holography development of novel detectors  high energy physics ALEPH, CERN HERA-B, DESY  astrophysics XMM-Newton, XEUS, ROSITA, MEGA, SVOM  related fields synchrotron radiation experiments  technology transfer Silicon Drift Detectors for X-ray spectroscopy industrial applications 2 MPI laboratory X-ray astronomy pnCCD framestore pnCCD active pixel sensor conclusion MPI semiconductor laboratory common institution of the Max-Planck-Institutes for Physics and for Extraterrestrial Physics founded in scientists, engineers, technicians, students

P. Lechner IWORID 2002 Silicon Drift Detector modules for X-ray fluorescence analysis and electron microprobe analysis development of novel detectors  high energy physics ALEPH, CERN HERA-B, DESY  astrophysics XMM-Newton, XEUS, ROSITA, MEGA, SVOM  related fields synchrotron radiation experiments  technology transfer Silicon Drift Detectors for X-ray spectroscopy industrial applications KETEK GmbH 2 MPI laboratory X-ray astronomy pnCCD framestore pnCCD active pixel sensor conclusion MPI semiconductor laboratory common institution of the Max-Planck-Institutes for Physics and for Extraterrestrial Physics founded in scientists, engineers, technicians, students

P. Lechner IWORID 2002 MPI semiconductor laboratory... with modern, custom made facilities for a full 6-inch silicon process line800 m² cleanroom up to class 1... mounting & bondingtest & qualificationsimulation, layout & data analysis 3 MPI laboratory X-ray astronomy pnCCD framestore pnCCD active pixel sensor conclusion

P. Lechner IWORID 2002 X-ray astronomy 4 MPI laboratory X-ray astronomy pnCCD framestore pnCCD active pixel sensor conclusion access to hot matter and energetic processes  supernovae  X-ray bursters  neutron stars  X-ray binaries  pulsars  black holes  quasars

P. Lechner IWORID 2002 X-ray astronomy - instrumentation 5 MPI laboratory X-ray astronomy pnCCD framestore pnCCD active pixel sensor conclusion telescope collimator, coded mask mirror telescope ´Wolter-I´ grazing angle reflection (microchannel plate) XMM mirrors

P. Lechner IWORID 2002 X-ray astronomy - instrumentation 5 MPI laboratory X-ray astronomy pnCCD framestore pnCCD active pixel sensor conclusion telescope collimator, coded mask mirror telescope ´Wolter-I´ grazing angle reflection (microchannel plate) focal plane proportional counter CCD ASCA, Chandra, XMM-Newton APS XEUS (high-Z semiconductors, cryogenic detectors) XMM-Newton Chandra

P. Lechner IWORID 2002 pnCCD principle MOS-CCD (´video CCD´) MOS transfer gates buried channel partial depletion frontside illumination serial readout 6 MPI laboratory X-ray astronomy pnCCD framestore pnCCD active pixel sensor conclusion

P. Lechner IWORID 2002 pnCCD principle MOS-CCD (´video CCD´) MOS transfer gates  implanted pn-junctions buried channel  deep transfer partial depletion  full depletion frontside illumination  back entrance window serial readout  1 preamp / channel pnCCD 6 MPI laboratory X-ray astronomy pnCCD framestore pnCCD active pixel sensor conclusion

P. Lechner IWORID 2002 pnCCD performance largest monolithic CCD 6 x 6 cm² 384 x 400 pixel 150 µm pixel fast readout 5 msec full frame low noise 4 el. rms high quantum efficiency 90 % radiation hard 400 Mp/cm² 7 MPI laboratory X-ray astronomy pnCCD framestore pnCCD active pixel sensor conclusion

P. Lechner IWORID 2002 pnCCD performance 7 MPI laboratory X-ray astronomy pnCCD framestore pnCCD active pixel sensor conclusion largest monolithic CCD 6 x 6 cm² 384 x 400 pixel 150 µm pixel fast readout 5 msec full frame low noise 4 el. rms high quantum efficiency 90 % radiation hard 400 Mp/cm²

P. Lechner IWORID 2002 pnCCD performance 7 MPI laboratory X-ray astronomy pnCCD framestore pnCCD active pixel sensor conclusion largest monolithic CCD 6 x 6 cm² 384 x 400 pixel 150 µm pixel fast readout 5 msec full frame low noise 4 el. rms high quantum efficiency 90 % radiation hard 400 Mp/cm²

P. Lechner IWORID 2002 pnCCD performance 7 MPI laboratory X-ray astronomy pnCCD framestore pnCCD active pixel sensor conclusion largest monolithic CCD 6 x 6 cm² 384 x 400 pixel 150 µm pixel fast readout 5 msec full frame low noise 4 el. rms high quantum efficiency 90 % radiation hard 400 Mp/cm²

P. Lechner IWORID 2002 pnCCD vs. MOS-CCDs backside illumination full depletion large pixels, parallel readout 8 MPI laboratory X-ray astronomy pnCCD framestore pnCCD active pixel sensor conclusion

P. Lechner IWORID 2002 XMM-Newton – the satellite 3 imagers 2 MOS-CCD + RGS 1 pnCCD pointing at one source energy range keV Wolter-I telescopes 58 nested mirror shells eff. area0,5 m² (1 keV) focal length7,5 m FOV30 arcmin resolution15 arcsec highly excentric orbit 48 h perigee: km apogee: km 9 MPI laboratory X-ray astronomy pnCCD framestore pnCCD active pixel sensor conclusion

P. Lechner IWORID 2002 XMM-Newton – integration & launch 10 MPI laboratory X-ray astronomy pnCCD framestore pnCCD active pixel sensor conclusion mounting of pnCCD camera satellite integration mirror system

P. Lechner IWORID MPI laboratory X-ray astronomy pnCCD framestore pnCCD active pixel sensor conclusion launch by ARIANE-V from Kourou 10–Dec–1999 XMM-Newton in orbit XMM-Newton – integration & launch

P. Lechner IWORID 2002 XMM-Newton – first light large Magellanic cloud supernova remnant 1987A 11 MPI laboratory X-ray astronomy pnCCD framestore pnCCD active pixel sensor conclusion

P. Lechner IWORID 2002 XMM-Newton - observations remnant of supernova observed by Tycho Brahe in 1572 energy [keV] relative intensity element distribution 12 MPI laboratory X-ray astronomy pnCCD framestore pnCCD active pixel sensor conclusion

P. Lechner IWORID 2002 XMM-Newton - observations Lockman hole: a look into deep space first observation of ´green´ and ´blue´ hard x-ray sources no diffuse background? 12 MPI laboratory X-ray astronomy pnCCD framestore pnCCD active pixel sensor conclusion

P. Lechner IWORID 2002 pnCCD – performance in space perfect imaging since launch 500 revolutions > 1000 observations no significant change of energy resolution and charge transfer efficiency few pixels lost in rev. 156 impact of micro-meteorite? effect reproduced on ground using a dust accelerator 13 MPI laboratory X-ray astronomy pnCCD framestore pnCCD active pixel sensor conclusion

P. Lechner IWORID 2002 pnCCD - limitation charge transfer speed limited by the time needed for readout ´out of time´ events pnCCD: ~ 6 % 14 MPI laboratory X-ray astronomy pnCCD framestore pnCCD active pixel sensor conclusion

P. Lechner IWORID 2002 framestore pnCCD frame store area  separation transfer / readout  reduction of out-of-time events 6 % (XMM)  0.4 % prototypes under test  smaller pixels (75 µm)  improved performance 15 MPI laboratory X-ray astronomy pnCCD framestore pnCCD active pixel sensor conclusion

P. Lechner IWORID 2002 ROSITA ROSITA - ROentgen Survey with an Imaging Telescope Array point sources diffuse background 16 MPI laboratory X-ray astronomy pnCCD framestore pnCCD active pixel sensor conclusion

P. Lechner IWORID 2002 XEUS – X-ray Evolving Universe Spectroscopy 17 MPI laboratory X-ray astronomy pnCCD framestore pnCCD active pixel sensor conclusion X-ray telescope with large aperture energy range 100 eV keV scientific aim: investigation of the universe at an early evolution stage two spacecrafts - mirror spacecraft Wolter-I telescope effective area: 6 m² (30 1keV - detector spacecraft focal plane instrumentation - 2 narrow field imagers - 1 wide field imager

P. Lechner IWORID 2002 XEUS WFI vs. XMM-Newton XMMXEUS WFI energy range keV keVthickness 300 µm  500 µm focal length7.5 m50 m angular resolution15 arcsec2 arcsec focal plane res.36 µm / arcsec250 µm / arcsecpixel size150 µm  75 µm field of view30 arcmin5 arcmindetector area6 x 6 cm²  7.6 x 7.6 cm² collection area 1keV0.5 m²6 m² (30 m²)readout speed time resolution70 msec msecreadout speed operating temp.130 K> 180 K Active Pixel Sensor  1 integrated preamp / pixel  random accessible pixels  no charge transfer within silicon 18 MPI laboratory X-ray astronomy pnCCD framestore pnCCD active pixel sensor conclusion

P. Lechner IWORID 2002 DEPFET DEPFET – DEpleted P-channel Field Effect Transistor 19 MPI laboratory X-ray astronomy pnCCD framestore pnCCD active pixel sensor conclusion p-FET (JFET or MOSFET) on depleted n-Si bulk local potential minimum for electrons  ‘internal gate‘ current change prop. to number of charges in the ‘internal gate‘  I > 200 pA / electron nondestructive readout charge integration and storage in ON and OFF state reset through clear contact, supported by clear gate backside illuminated

P. Lechner IWORID 2002 DEPFET – simulation 20 MPI laboratory X-ray astronomy pnCCD framestore pnCCD active pixel sensor conclusion

P. Lechner IWORID 2002 DEPFET – active pixel sensor 21 MPI laboratory X-ray astronomy pnCCD framestore pnCCD active pixel sensor conclusion

P. Lechner IWORID 2002 DEPFET – active pixel sensor 22 MPI laboratory X-ray astronomy pnCCD framestore pnCCD active pixel sensor conclusion

P. Lechner IWORID 2002 DEPFET – active pixel sensor BioScope for autoradiography (University Bonn) 23 MPI laboratory X-ray astronomy pnCCD framestore pnCCD active pixel sensor conclusion

P. Lechner IWORID 2002 DEPFET – status test of isolated pixel JFET-based DEPFET L = 5 µm, W = 50 µm time-continuous filter ______________________ production of APS prototypes 64 x 64 new readout chip under test new control chip submitted 24 MPI laboratory X-ray astronomy pnCCD framestore pnCCD active pixel sensor conclusion

P. Lechner IWORID 2002 Conclusion 25 MPI laboratory X-ray astronomy pnCCD framestore pnCCD active pixel sensor conclusion X-ray astronomy  driving force in semiconductor detector development novel detectors  new view to the X-ray sky... no end in sight...

P. Lechner IWORID 2002 Thanks L. Andricek, D. Hauff, P. Klein*, G.Lutz, R.H. Richter, M. Schnecke, P. Solc* Max-Planck-Institut für Physik, Munich, Germany H. Bräuninger, S. Bonerz, U. Briel, K. Dennerl, J. Englhauser, G. Hartner, G. Hasinger, T. Johannes*, S. Kemmer*, J. Kollmer, N. Krause*, N. Meidinger, E. Pfeffermann, E. Ruttkowski, G. Schaller, F. Schopper, D. Stötter*, L. Strüder, J. Treis, J. Trümper Max-Planck-Institut für extraterrestrische Physik, Garching, Germany R. Eckard, R. Hartmann, K. Heinzinger, P. Holl, P. Lechner, H. Soltau, U. Weichert PNSensor GmbH, Munich, Germany N. Findeis*, J. Kemmer, S. Krisch*, R. Stötter, U. Weber* KETEK GmbH, Munich, Germany E. Kendziorra, K. Kramer, R. Staubert Astronomisches Institut Tübingen, Tübingen, Germany P. Fischer, W. Neeser*, I. Peric, M. Trimpl, J. Ulrici, N. Wermes University of Bonn, Bonn, Germany W. Buttler Ingenieurbüro Buttler, Essen, Germany E. Gatti, A. Longoni, M. Sampietro Politecnico di Milano, Milan, Italy P. Rehak Brookhaven National Laboratory, Upton, NY, USA 26