Are you what you eat? 1. The important Characteristics of Carbon Forms 4 covalent bonds Forms double and triple bonds Forms long chains and rings Can.

Slides:



Advertisements
Similar presentations
(carbon-based compounds)
Advertisements

Structure and Function of Macromolecules
The Chemical Building Blocks of Life Chapter 3. 2 Biological Molecules Biological molecules consist primarily of -carbon bonded to carbon, or -carbon.
Lesson Overview 2.3 Carbon Compounds.
The Big Four.
The Structure and Function of Macromolecules
BIG IDEA: Organic compounds are necessary for life to exist
Chapter 3 Biology Sixth Edition Raven/Johnson (c) The McGraw-Hill Companies, Inc.
Honors Biology The molecules of Cells
2.3 Carbon Compounds Standard B.1.1
Carbohydrates, Proteins, Lipids, and Nucleic Acids
Are you what you eat? 1. The important Characteristics of Carbon Forms 4 covalent bonds Forms double and triple bonds Forms long chains and rings Can.
1. The important Characteristics of Carbon Forms 4 covalent bonds Forms double and triple bonds Forms long chains and rings Can bind with many other.
Are you what you eat? 1. The important Characteristics of Carbon Forms 4 covalent bonds Forms double and triple bonds Forms long chains and rings Can.
Carbohydrates, Lipids, Proteins, and Nucleic Acids Macromolecules.
Are you what you eat? 1. The important Characteristics of Carbon Forms 4 covalent bonds Forms double and triple bonds Forms long chains and rings Can.
1. The important Characteristics of Carbon Forms 4 covalent bonds Forms double and triple bonds Forms long chains and rings Can bind with many other.
1 The Chemical Building Blocks of Life Chapter 3.
1. The important Characteristics of Carbon Forms 4 covalent bonds Forms double and triple bonds Forms long chains and rings Can bind with many other.
Organic Chemistry (Chapter 3) Organic chemistry is the chemistry of carbon compounds. Biochemistry is the study of carbon compounds that crawl.
Chapter 3 The Molecules of Cells By Dr. Par Mohammadian Overview: -Carbon atom -Functional Groups -Major Biomolecules.
Macromolecules Carbon based molecules
The Chemical Building Blocks of Life Chapter 3. 2 Biological Molecules Biological molecules consist primarily of -carbon bonded to carbon, or -carbon.
Organic Chemistry Organic chemistry is the chemistry of carbon compounds. Biochemistry is the study of carbon compounds that crawl.
Are you what you eat? 1. The important Characteristics of Carbon Forms 4 covalent bonds Forms double and triple bonds Forms long chains and rings Can.
Are you what you eat? 1. The important Characteristics of Carbon Forms 4 covalent bonds Forms double and triple bonds Forms long chains and rings Can.
Organic Chemistry Organic compounds contain the element carbon Occur naturally only in living organisms or in their products Out of the 92 elements found.
The Chemical Building Blocks of Life Chapter 3. 2 Biological Molecules Biological molecules consist primarily of -carbon bonded to carbon, or -carbon.
The Chemistry of Life Chapter 2-3 What macromolecules are important to living things? What are the functions of each group of macromolecules?
Organic Chemistry. Carbon Inorganic compound- does not contain C and H Inorganic compound- does not contain C and H Organic compound- contains C and H.
Macromolecules.
copyright cmassengale
Macromolecules “The molecules of life”
Notes: Chapter 2.3 Carbon Compounds
AP Bio Chapter 3 Organic chemistry.
The Chemical Building Blocks of Life
Macromolecules.
Organic Compounds Compounds that contain CARBON are called organic.
Macromolecules Building blocks Of life Carbohydrates Lipids Proteins
Structure and Function of macromolecules
copyright cmassengale
Macromolecules.
copyright cmassengale
copyright cmassengale
The Big Four.
Structure and Function of Macromolecules
Macromolecules Mr. Nichols Coronado HS.
copyright cmassengale
copyright cmassengale
Macromolecules.
copyright cmassengale
Bio-Macromolecules.
Macromolecules.
copyright cmassengale
copyright cmassengale
copyright cmassengale
Macromolecules.
copyright cmassengale
copyright cmassengale
copyright cmassengale
Structure and Function of Macromolecules
Macromolecules.
Structure and Function of Macromolecules
copyright cmassengale
copyright cmassengale
copyright cmassengale
copyright cmassengale
copyright cmassengale
copyright cmassengale
copyright cmassengale
Presentation transcript:

Are you what you eat?

1. The important Characteristics of Carbon Forms 4 covalent bonds Forms double and triple bonds Forms long chains and rings Can bind with many other elements Even electron distribution (nonpolar molecules)

2. Macromolecules, Monomers and Polymers (Hint: think of the meaning of the prefixes)

What do these words mean?

Polygons Polygamy Polyester

2. Macromolecules, Monomers and Polymers Polymer – Smaller organic molecules join into long chains. Monomer – the individual unit that builds up polymers Macromolecules – Very large molecules

3. Dehydration synthesis and Hydrolysis These two terms refer to the processes that forms monomers and polymers: Dehydration synthesis – A reaction that removes molecules of water to form polymers from monomers Hydrolysis – The reaction that adds water to polymers to separate them to their individual monomers. ( or )

Isomers Molecules that have the same formula, but different structures. Examples: Glucose and Fructose

4. What are the big four?

Three out of the 4 types of biochemical macromolecules can be found on food nutrition labels…

Look at the label to the left. 3 of the 4 macromolecules can be found in foods. 1____________________ 2____________________ 3____________________ (0 grams in this product) (13 grams in this product) (9 grams in this product)

4. What are the big four? Fats (we call them lipids) Carbohydrates Proteins Nucleic acids (DNA and RNA)

When studying these biochemical molecules, we are interested in finding out….. what they do for living things. what they generally look like. what their monomers are. and how they may help the body gain energy to sustain life. SO, LETS GET STARTED!

Great website for reference…

5. Carbohydrates Molecules that form from atoms in C1:H2:O1 ratio Monomers: Monosaccharides (simple sugars) Monosaccharides are usually sweet, white powdery substances (such as fructose, glucose) that form rings of carbon atoms.

Monosaccharides in general serve as direct, quick sources of energy for living organisms during cellular respiration, they are building blocks of many polymers Important monosaccharides: Glucose Fructose

Disaccharides – two monosaccharide molecules combine by dehydration synthesis to form disaccharides

Important disaccharides: Lactose – found in milk sugar Sucrose – table sugar

Polysaccharides – many (tens to hundreds) units of monosaccharides combine by dehydration synthesis Polysaccharides also separate to monosaccharides by hydrolysis while taking in water.

Important polysaccharides: Starch – made up of many glucose units, it is an important storage polysaccharide that is found in plant roots and other tissues. It stores monosaccharides that can be broken down later to release useful energy during cellular respiration – ONLY IN PLANTS Glycogen – also made up of many glucose units, it is an important storage polysaccharide in the liver and animal muscles. It can also be broken down to monomers to release energy during cellular respiration. ONLY IN ANIMALS Cellulose – also made up of many glucose units. However, in this case the molecule is not easily broken down to its monomers. It is important for providing a rigid structure in plant cell walls.

Chitin – made up of some nitrogen containing monosaccharides. It is an important polysaccharide that provide the solid structure of arthropods and fungi.

6. Lipids a diverse group of molecules that are nonpolar and generally do not dissolve in water They mostly contain carbon, hydrogen, very few oxygen atoms, but some also have phosphorous. There are three distinct groups of lipids: Simple lipids Phospholipids Sterols

6A. Simple Lipids Very large molecules that form from 2 different kinds of monomers by dehydration synthesis: 3 Fatty acids – are long chains of carbon with oxygen at the end (can be saturated and unsaturated) 1 Glycerol – smaller 3-carbon compound.

Simple lipids are important as storage materials in all living things. They can store twice as many calories as polysaccharides can. Oils (mostly from plants) contain more unsaturated fatty acids, while fats (animals) contain more saturated fatty acids. Simple lipids also dissolve vitamins

6B. Phospholipids Phospholipids – phosphate containing lipids. Their monomers: 1 glycerol + 2 fatty acids (saturated or unsaturated) + phosphate. These monomers combine by dehydration synthesis Phospholipids have both polar and nonpolar sections. As a result, they are able to dissolve in both type of solvents as well. They are important for living things because they form the borders of all cells (cell membranes) and also participate in forming many cell organelles.

6C. STEROLS Sterols are a highly nonpolar (hydrophobic) group of molecules. They occur naturally in plants, animals, and fungi, with the most familiar type of animal sterol being cholesterol. Cholesterol is vital to cellular function, and a precursor to fat-soluble vitamins and steroid hormones. 3-six sided rings and one 5-sided ring + alcohol

7. Proteins Protein- Polymer constructed from amino acid monomers. Only 20 amino acids, but make 1,000s of proteins Some are 100 a.a. in length; some are thousands 3-D Protein

7A. Protein Functions Each of our 1,000s of proteins has a unique 3-D shape that corresponds to a specific function: Defensive proteins Antibodies in your immune system Signal proteins Hormones and other messengers Hemoglobin Delivers 0 2 to working muscles Transport proteins Move sugar molecules into cells for energy (insulin) Storage proteins Ovalbumin (found in egg white) used as a source of amino acid for developing embryos Most important roles is as enzymes Chemical catalysts that speed and regulate virtually all chemical reactions in cells Example, lactase

7B. Amino Acid structure Proteins diversity is based on differing arrangements of 20 amino acids. Amino acids all have an amino group and a carboxyl group. R group is the variable part of the amino acid; determine the specific properties of the 20 amino acids. Two main types: Hydrophobic Example: Leucine R group is nonpolar and hydrophobic Hydrophilic Polar and charged a.a.’s help proteins dissolve in aqueous solutions inside cells. Example: Serine R group is a hydroxl group

7C. Amino Acid Dehydration Cells join amino acids together in a dehydration reaction: Links the carboxyl group of one amino acid to the amino group of the next amino acid as a water molecule is removed. Form a covalent linkage called a peptide bond making a polypeptide.

7D. Protein Structure Primary Structure Unique sequence of amino acids For any protein to perform its specific function, it must have the correct collection of amino acids arranged in a precise order. Example: a single amino acid change in hemoglobin causes sickle-cell disease Determined by inherited genetic information.

7D. Protein Structure Secondary Structure Parts of the polypeptide coil or fold into local patterns. Patterns are maintained by regularly spaced hydrogen bonds between the hydrogens of the amino group and the oxygen of the carboxyl groups. Coiling results in an alpha helix. Many fibrous proteins have the alpha structure over most of their length Example: structural protein of hair Folding leads to a pleated sheet. Make up the core of many globular proteins Dominate some fibrous proteins, including the silk proteins of a spider’s web

7D. Protein Structure

Tertiary Structure Overall, three-dimensional shape of a polypeptide. Roughly describe as either globular or fibrous Generally results from interactions among the R groups of amino acids making up the polypeptide.

7D. Protein Structure Quaternary Structure Results from association of subunits between two or more polypeptide chains. Does not form in every protein. Example, Hemoglobin

8. Nucleic Acids DNA and RNA Deoxyribonucleic Acid (DNA) Monomers made up of nucleotides: Nucleotides consist of: A five carbon sugar, deoxyribose Phosphate group Nitrogenous base (Adenine, Guanine, Cytosine, Thymine) Double helix consists of: Sugar-phosphate backbone held by covalent bonds Nitrogen bases are hydrogen bonded together; A pairs with T and C pairs with G

8A. Nucleotides of DNA

8B. DNA Genetic material that organisms inherit from their parents. Genes Specific stretches of DNA that program amino acid sequences of proteins.

8C. RNA Ribonucleic Acid (RNA) Intermediary for making proteins Single-stranded Also made up of monomers of nucleotides Nucleotide of RNA: Sugar is ribose (not deoxyribose) Phosphate group Nitrogen bases (Adenine, Uracil (instead of Thymine, Guanine, and Cytosine)

Enzymes