ECLSS System Overview Subsystems of ECLSS (environment control and life support system) Atmosphere Water Waste Food.

Slides:



Advertisements
Similar presentations
Unit 3, Chapter 9, Lesson 9: Space Systems Engineering 1 The Systems-engineering Process Trading Requirements We use the requirements loopa necessary and.
Advertisements

eQuest Quick Energy Simulation Tool
ENERGY SURVEYING Please Click through this presentation.
Requirements for the MOB Mars Habitat
AAE450 Project Aquarius Breanne Wooten 1 Breanne Wooten Week 10*: March 22 th, 2007 Human Factors/Integration/APM Mars Taxi Emergency Airbag Update Final.
HVAC System Design PES Institute of Technology. Objective Goal: To develop an automotive air-conditioning system that is smaller and lighter than with.
Engineering Disciplines © 2012 Project Lead The Way, Inc.Introduction to Engineering Design.
NNJ09BH0123RAppendix L A-Crew, Robotics, Avionics, and Vehicle Equipment (CRAVE)- Unrestricted Data Attachment L-2-A-1.
2 Courtney Rogge ASTE 527 Fall 2010 LSS Air Revitalization System Food: Storage and Waste Waste processing / Hygiene Water Regen VATCS Vehicle Active.
Lunar Base Challenge Space Academy for Educators 2012.
Larry Bell, Sasakawa International Center for Space Architecture (SICSA) Gerald D. Hines College of Architecture, University of Houston, Houston TX RUTGERS.
Minimalist Human Mars Mission Surface infrastructure discussion July 26 th, 2008.
MinMars Project Surface Infrastructure Update A DevelopSpace Project June 15 th, 2008.
Architecture Outline. 2-Dec-04 USC 2004 AME 557 Space Exploration Architecture Race Overview  What is HERCULES? Race Logistics Provider Subsystems Orchestration.
AAE450 Senior Spacecraft Design Kate Mitchell - 1 Kate Mitchell Week 6: February 22 nd, 2007 Human Factors – Group Lead HAB & TV Vehicle Groups This Week:
Mars or Bust Preliminary Design Review 12/8/03. Mission Description Based on the Design Reference Mission from NASA (Hoffman and Kaplan, 1997; Drake,
Mars or Bust Preliminary Design Review 12/8/03. 2 ASEN 4158/5158 Design of Martian habitat Based on the Design Reference Mission (DRM) from NASA [Hoffman.
Habitat & Waypoints Picture. 2-Dec-04 USC 2004 AME 557 Space Exploration Architecture Design Requirements: A safe, reliable, low maintenance habitat to.
NASA’s Flexible Range Exploration Device - FRED(aka LER; aka SPR)
Energy Audit- a small introduction A presentation by Pune Power Development Pvt. Ltd.
Strategic Plan Elements: ISRU, Analog Outpost Mike Duke November 10, 2008.
Environmental Control and Life Support on the International Space Station Engineering 2.
NASA Environmental Systems Commercial Space Technology Center (ES CSTC) Overview Briefing by William J. Sheehan Sept. 25, 2002.
Dr. Jennifer Rochlis. Overview Build a technology testbed for future rover concepts Develop and demonstrate operations and mission concepts.
Modularly Adaptable Rover and Integrated Control System Mars Society International Conference 2003 – Eugene, Oregon.
Near-Term Mars Colonization - DevelopSpace Project - April 20, 2008.
Inventory of consumables Food Water Oxygen Per day and for entire length of stay Factor in back up in case of emergency?
1 Formation Flying Project Proposal 2/5/07 Rachel Winters (Team Lead) Aziatun Burhan Tsutomu Hasegawa Shunsuke Hirayama Matt Mueller Masao Shimada Shelby.
Engineering Disciplines
An Investigation Into Advanced Life Support system for Mars Thursday 9 th February, AM Chemical Engineering Design Projects 4 Red Planet Recycle.
AAE450 Senior Spacecraft Design Kate Mitchell - 1 Kate Mitchell Week 4: February 8 th, 2007 Human Factors – Group Lead HAB, TV, Integration Group This.
NASA LUNAR STATION PROJECT. Members Vicente Emilio José Juan Manuel 2 PAI.
Challenges & Strategies for Lunar Habitation Systems Larry Toups Advanced Projects Office Constellation Program October 2006.
USSRC Proprietary ECLSS PANELS Orbiter ML31C L1 & L2 MEDS – Multi-function electronic Display System retrofitted to Atlantis 1999.
Remember... Resistance in Mechanical systems (friction) opposes motion of solid objects.
9 Systems Analysis and Design in a Changing World, Fourth Edition.
MIT : NED : Mission to Mars Presentation of proposed mission plan
9 Systems Analysis and Design in a Changing World, Fourth Edition.
Universal Chassis for Modular Ground Vehicles University of Michigan Mars Rover Team Presented by Eric Nytko August 6, 2005 The 2 nd Mars Expedition Planning.
Mars or Bust Management Briefing Subsystem Update 11/19/03.
Thermal Control System. The Three Mechanisms of Heat Transfer Conduction - The transfer of heat through a solid –Interface Heat Exchangers –Cold plates.
Engineering Disciplines
Near-Term Mars Colonization -A DevelopSpace Project- May 4 th, 2008.
Crew Mobility for Lunar Surface Exploration Dr. Rob Ambrose NASA-JSC May 2008.
A&AE 450 – Senior Design Un-pressurized Surface Vehicles, Local Science Issues and Robotic Exploration February 13, 2000 Christopher Burnside.
Engineering Disciplines Get out your notes:. Learning Objectives Be able to describe several different engineering fields –General Description –Specific.
ILC Dover Proprietary Information “Z” Suits” NASA’s Exploration Extravehicular Activity Space Suit Development Program FISO Telecon Phil Spampinato.
Near-Term Mars Colonization -A DevelopSpace Project- June 15 th, 2008.
ERV Team 2 Final Report Alicia Cole-Quigley James Gilson Erin Hammond Domenic Marcello Matt Miller Jeff Rosenberger.
© 2014 Airbus Defence and Space – All rights reserved. The reproduction, distribution and utilization of this document as well as the communication of.
Phil Dempsey ISS Vehicle Office July 15, 2014 Inspection Considerations from the ISS Program NASA In-Space Inspection Workshop 2014.
Crushing Martian Regolith Simulant for In-Situ Water Extraction Final Presentation Nick Sestito & Christopher Graham Interdisciplinary member: Ian Kaplan.
ESS Cooling System - Interface with DTL 1 John Jurns Cooling System Engineer.
ESS Cooling System - Interface with RFQ 1 John Jurns Cooling System Engineer.
USSRC Proprietary ECLSS PANELS Orbiter ML31C L1 & L2 MEDS – Multi-function electronic Display System retrofitted to Atlantis 1999.
National Aeronautics and Space Administration Environmental Control & Life Support Systems for Mars Exploration 2016 Humans to Mars Summit Robyn Gatens.
SLS Derived Vertical Habitat
1 ME Spring 2013 Introduction to Systems Engineering Session 3 Dr. Dan C. Surber, ESEP © Copyright 2013.
Callisto Mission LaRC Option
Design of the thermosiphon Test Facilities 2nd Thermosiphon Workshop
CHAMP: Cygnus Habitation Module Project , Ryan Hardy, Kayla Hasbrouck, Benjamin Lewis, Kaitlin McIntosh , Ryan Morse, Joe Reichert, Kimia Seyedmadani,
Design and realization of Payload Operation and Application system of China’s Space Station Wang HongFei 首页.
How SCADA Systems Work?.
COMPONENTS OF SOLAR WATER HEATER
In-situ Propellant Production and ERV Propulsion System
Adam Koelling Jake Charnock Matthew Nesselrodt Kyle Raney
Conduction, Convection, and Radiation
ILC Experimental Hall Cryogenics An Overview
Piping and Instrumentation for Process Industries
Unit 5: Lesson 2 Accommodations for Space
Presentation transcript:

ECLSS System Overview Subsystems of ECLSS (environment control and life support system) Atmosphere Water Waste Food

Overview of ECLSS subsystems FOOD WASTE WATER AIR

Pretreatment Oxone, Sulfuricacid ECLSS System O Atmosphere System Waste Food Water Atmospheric Condenser Urine Compactor Solid Waste Storage TCCA Trash washer hygiene Preparation Plant Hab Fecal SPWE Vent to Mars Atm. H2 EDC CO2 Pretreatment Oxone, Sulfuricacid Pretreated Urine VCD AES Brine Water Ultra Filtration RO Milli Q MCV Iodine Monitoring Hygiene Water Iodine Removal Bed ISE Monitoring Potable Water

verview

Human Consumables Atmosphere Water O2 consumption: 0.85 kg/man-day [Eckart, 1996] CO2 production: 1.0 kg/man-day [Eckart, 1996] Leakage (14.7psi): 0.11 kgN2/day & 0.03 kgO2/day Water Potable 3 L/person/day [Larson, 1997] 1.86 Food Preparation •1.14 Drink Hygiene 18.5 L/person/day [Larson, 1997] 5.5 Personal Hygiene •12.5 Laundry •0.5 Toilet Flush

Human Consumables Waste Food Urine: 9.36 kg/day [Eckart, 1996] Feces: 0.72 kg/day [Eckart, 1996] Technology & Biomass 1.012 kg/day [Eckart, 1996] Food ~ 2,000 kCal per person per day [Miller, 1994]

Atmosphere System Schematic crew cabin cabin leakage O2 N2 storage tanks EDC N2 FDS To: hygiene water tank T&H control H2O To: vent To: trash compactor SPWE H2 TCCA H2 & O2 CO2 From: H2O tank used filters & carbon N2 O2, & H2O Specifications Fixed mass 1,965 kg Consumable 4 kg/day Power 3.5 kW

Water System Schematic Specifications Fixed mass 942.71 kg Consumable (technologies) 0.36 kg/day Power 2.01 kW

Waste System Schematic To: waste water tank feces commode urinal compactor From: TCCA food trash microfiltration VCD trash fecal storage solid waste urine H2O Specifications Fixed mass 279 kg Consumable 2.3 kg/day Power 0.22 kW

Food System Schematic Specifications Fixed mass 1,320 kg Consumable 4.5 kg/day Power 3.4 kW To: trash compactor trash potable water microwave food preparation food & drink Salad Machine edible plant mass inedible plant mass food waste & packaging storage waste H2O

Habitat Layout Allocated Volume Subsystem Hatches: One at each end, one in the middle, all on bottom floor Top Floor: personal space and crew accommodations Subsystem Allocated Volume CCC 10 ECLSS 60 Structures 160 EVAS 30 Thermal 40 Power Crew Accom. 75 Empty 300 Total 705 Bottom Floor: Lab, equipment, and airlocks Basement: Storage, equipment, supports and wheels

Leakage ISS Leakage – 1.24 kg/yr/m3 Lunar Base Concept – 1.83 kg/yr/m3 MOB Habitat – 530 m3 Estimated Habitat Leakage – 657-791 kg/yr Assume similar: Differential pressure Materials Thickness of outer shell

Future Tasks Load analysis Insulation Shielding Layout – more detail Volume Allocation – more detail

Thermal System

Thermal System Overview Requirement Must reject 25 KW (from Power system) Must cool each subsystem Must use a non-toxic interior fluid loop External fluid loop must not freeze Accommodating transit to Mars Design Rejects up to 40 KW via radiator panels Cold plates for heat collection from each subsystem Internal water fluid loop External TBD fluid loop During transit heat exchangers will connect to the transfer vehicle’s thermal system 25 KW from Power System estimates. Each subsystem’s electronics must not exceed 40°C (hot to touch - potential failure). Non toxic fluid for inner loop so humans are not killed. External fluid must not freeze under Martian extremes. Cold Plates for heat collection. Radiators for heat rejection. Water is non-toxic.

Thermal I/O Diagram

Thermal Schematic Misc. Avionics - Crew Accommodations and ISRU Avionics

Current Status Radiator panels sized for HOT - HOT scenario Fluid pumps sized Initial power usage estimated Initial plumbing estimates Initial total mass estimates System schematics All systems on, all crew exercising on hottest day (approx 263 K). Radiators operating at 290 K. 15% degradation levels (first guess) and 25% safety factor. Means radiators are probably oversized.

Thermal Components 4 radiator panels. Hab can be fully operational using 3 panels. Hab can be mostly operational using 2 panels. Minimal operation with 1 panel. Each panel rejects approximately 10,000 W operating at 290 K. Note that thermal system uses 2 KW in this case and that only two pumps are in operation at a time. The other 4 pumps provide the 2 levels of required redundancy (2 per fluid loop). *Power is for two pumps in operation at one time, not six

Future Tasks Cold plates and sizing TBD External fluid loop TBD Heat exchangers TBD Radiator locations TBD Fluid storage TBD COLD - COLD scenario TBD Sensors/Data/Command structure TBD FMEA Report

C3 Subsystem

C3 Design Status Qualitatively defined data flows Created preliminary design based on data flows, mission requirements and existing systems Command and Control System Sizing and architecture based on ISS Mass, power and volume breakdowns Communications System Sizing and architecture based on existing systems Mass and power breakdowns Assuming at least 1 Mars orbiting communications satellite

C3 I/O Diagram Earth Robotics & Automation Structure EVAS Mars Com Sat CCC Crew Accommodations Legend Mars Env’mt Power ECLSS ENERGY Packetized Data Telemetry/Data Command/Data Voice Video Electrical power Heat Thermal Nuclear Reactor Crew ISRU ISRU Plant

Command and Control System Tier 1 Command Computers (3) RF Hubs (3) User Terminals (6) Tier 1 Emergency Computer (1) Tier 2 Subsystem Computers (4) Tier 2 Science Computers (2) File Server (1) Tier 3 Subsystem Computers (8) Caution & Warning (?) C3 System Sensors Firmwire Controllers Experiments Other Systems Control System Diagram V 1.0, 11/8/2003 Legend Ethernet RF Connection Mil-Std 1553B Bus TBD

Communications System High gain system Link with Earth and long range rovers Normally communicates through orbiting satellite Emergency option for direct Earth communications Medium gain system Emergency to satellite if high gain system fails UHF system Local communications with EVA crew

C3 Future Tasks Quantify data flows and adjust preliminary design Determine spare parts needs Estimate cabling mass Address total system mass overrun Define maintenance and operational requirements FMEA Report

Mission Operations Past Derived Requirements Reviewed Literature From DRM Reviewed Literature Larson and Pranke MSIS

Mission Operations Past Created Functional Diagram (Crew Accommodations) Diagram goes here

Mission Operations Present Creating lists of operations required for each subsystem Crew Operations example Automated Operations

Mission Operations Present Giving input to subsystems Based on human factors considerations Incorporating MSIS, Larson and Pranke, experience Determining mass, power, volume requirements for crew accommodations

Mission Operations Future Plans Continue integration of human factors into subsystems Create tentative crew schedules Equipment Maintenance Housekeeping Scientific Tasks Paperwork Personal Time

Robotics and Automation Number/Functions of rovers Three classes of rovers Small rover for scientific exploration Medium rover for local transportation Large pressurized rover for long exploration and infrastructure inspection Power/Mass specs on all rovers Power specs on robotic arms

Automation items (in progress) Automated doors in case of depressurization Deployment of habitat Connection to power plant Inspection of infrastructure Site preparation Communications hardware External monitoring equipment Deploy radiator panels Deployment/Movement of scientific equipment

External Vehicular Activity Systems EVA tasks will consist of constructing and maintaining habitat, and scientific investigation EVAS broken up into 3 systems EVA suit Airlock Pressurized/unpressurized rovers

EVAS – EVA Suit Critical functional elements: pressure shell, atmospheric and thermal control, communications, monitor and display, nourishment, and hygiene Current suit is much too heavy and cumbersome to explore the Martian environment ILC Dover is currently developing the I-Suit which is lighter, packable into a smaller volume, and has better mobility and dexterity

EVAS – EVA Suit I-Suit specs: Soft upper-torso 3.7 lbs/in2 (suit pressure can be varied) Easier to tailor to each individual astronaut ~65 lbs Bearings at important rotational points Greater visibility Boots with tread for walking on Martian terrain Parts are easily interchangeable (decrease number of spare parts needed)

EVAS - Airlock Independent element capable of being ‘plugged’ or relocated as mission requires Airlock sized for three crew members with facilities for EVA suit maintenance and consumables servicing There will be two airlocks each containing three EVA suits Airlock will be a solid shell (opposed to inflatable) The airlock will interface with the habitat through both an umbilical system and the hatch

EVA – Pressurized Rover Nominal crew of 2 – can carry 4 in emergency situations Rover airlock capable of surface access and direct connection to habitat Per day, rover can support 16 person hours of EVA Work station – can operate 2 mechanical arms from shirt sleeve environment Facilities for recharging portable LSS and minor repairs to EVA suit The rover will interface with the habitat through both an umbilical system and the hatch

EVAS – Umbilical System Connections from the habitat to the airlock and rover will be identical Inputs from habitat to airlock/rover (through umbilical system) Water (potable and non-potable) Oxygen/Nitrogen Data Power Outputs from airlock/rover to habitat (through umbilical system) Waste water Air

External Vehicular Activity Systems EVAS is primarily responsible for providing the ability for individual crew members to move around and conduct useful tasks outside the pressurized habitat EVA tasks will consist of constructing and maintaining habitat, and scientific investigation EVAS broken up into 3 systems EVA suit Airlock Pressurized Rover

EVAS – EVA Suit Critical functional elements: pressure shell, atmospheric and thermal control, communications, monitor and display, nourishment, and hygiene Current suit is much too heavy and cumbersome to explore the Martian environment ILC Dover is currently developing the I-Suit which is lighter, packable into a smaller volume, and has better mobility and dexterity

EVAS – EVA Suit I-Suit specs: Soft upper-torso 3.7 lbs/in2 (suit pressure can be varied) Easier to tailor to each individual astronaut ~65 lbs Bearings at important rotational points Greater visibility Boots with tread for walking on Martian terrain Parts are easily interchangeable (decrease number of spare parts needed)

EVAS - Airlock Independent element capable of being ‘plugged’ or relocated as mission requires Airlock sized for two crew members with facilities for EVA suit maintenance and consumables servicing There will be two airlocks each containing two EVA suits Airlock will be a solid shell (opposed to inflatable) The airlock will interface with the habitat through both an umbilical system and the hatch

EVA – Pressurized Rover Nominal crew of 2 – can carry 4 in emergency situations Rover airlock capable of surface access and direct connection to habitat Per day, rover can support 16 person hours of EVA Work station – can operate 2 mechanical arms from shirt sleeve environment Facilities for recharging portable LSS and minor repairs to EVA suit The rover will interface with the habitat through both an umbilical system and the hatch

EVAS – Umbilical System Connections from the habitat to the airlock and rover will be identical Inputs from habitat to airlock/rover (through umbilical system) Water (potable and non-potable) Oxygen/Nitrogen Data Power Outputs from airlock/rover to habitat (through umbilical system) Waste water Air

ISRU/Mars Environment System

ISRU/Mars Environment I/O Diagram

ISRU Schematic Misc. Avionics - Crew Accommodations and ISRU Avionics

Current Status Mars Environment Information Sheet has been created The information has been distributed to all subsystems and located on MOB website ISRU plant options have been summarized Initial plumbing designs and estimates Initial total mass estimates System schematics All systems on, all crew exercising on hottest day (approx 263 K). Radiators operating at 290 K. 15% degradation levels (first guess) and 25% safety factor. Means radiators are probably oversized.

ISRU Plant Summary Zirconia Electrolysis Advantages CO + CO2 Zirconia-walled Reactor 1000 °C CO2 CO + CO2 O2 Heat Advantages Simple operation Produces Oxygen Requires 1562 W-day/kg of Oxygen 4 radiator panels. Hab can be fully operational using 3 panels. Hab can be mostly operational using 2 panels. Minimal operation with 1 panel. Each panel rejects approximately 10,000 W operating at 290 K. Note that thermal system uses 2 KW in this case and that only two pumps are in operation at a time. The other 4 pumps provide the 2 levels of required redundancy (2 per fluid loop).

Sabatier Electrolysis ISRU Plant Summary Sabatier Electrolysis Advantages Produces methane and oxygen Energy efficient High production rates Disadvantages Requires hydrogen feedstock Methane and Oxygen aren’t produced in the ideal mixture ratio for rocket engines CH4 H2 + CO2 Nickel Catalyst 400 °C Heat Electrolysis H2O O2 4 radiator panels. Hab can be fully operational using 3 panels. Hab can be mostly operational using 2 panels. Minimal operation with 1 panel. Each panel rejects approximately 10,000 W operating at 290 K. Note that thermal system uses 2 KW in this case and that only two pumps are in operation at a time. The other 4 pumps provide the 2 levels of required redundancy (2 per fluid loop). Power H2 Requires 166 W-day/kg of propellant

ISRU Plant Summary RVGS Methanol Advantages Disadvantages CH4 H2 + CO2 Produces methane and oxygen Energy efficient High production rates Disadvantages Requires hydrogen feedstock Methane and Oxygen aren’t produced in the ideal mixture ratio for rocket engines CH4 H2 + CO2 Nickel Catalyst 400 °C Heat Electrolysis H2O 4 radiator panels. Hab can be fully operational using 3 panels. Hab can be mostly operational using 2 panels. Minimal operation with 1 panel. Each panel rejects approximately 10,000 W operating at 290 K. Note that thermal system uses 2 KW in this case and that only two pumps are in operation at a time. The other 4 pumps provide the 2 levels of required redundancy (2 per fluid loop). O2 Power H2 Requires 166 W-day/kg of propellant

ISRU Plant Summary RVGS Ethanol Advantages Disadvantages CH4 H2 + CO2 Produces methane and oxygen Energy efficient High production rates Disadvantages Requires hydrogen feedstock Methane and Oxygen aren’t produced in the ideal mixture ratio for rocket engines CH4 H2 + CO2 Nickel Catalyst 400 °C Heat Electrolysis H2O O2 4 radiator panels. Hab can be fully operational using 3 panels. Hab can be mostly operational using 2 panels. Minimal operation with 1 panel. Each panel rejects approximately 10,000 W operating at 290 K. Note that thermal system uses 2 KW in this case and that only two pumps are in operation at a time. The other 4 pumps provide the 2 levels of required redundancy (2 per fluid loop). Power H2 Requires 166 W-day/kg of propellant

Future Tasks ISRU plant trade study finalized Soil shelter from radiation design TBD Initial Mass estimates TBD Pump design and sizing TBD Thermal control requirements for water pipes TBD Interfaces with ECLSS TBD FMEA Report

Mars Surface Power Profile Allotted ~25kW Possibility of using power from other equipment

Power Breakdown Subsystem Power Available Power needed CCC 8kW ECLSS 8kW 9.1kW EVA 6kW Thermal 1kW Mission Ops 0.5kW 6kW Mars Env 0.5kW Robotics 1kW 3kW

Current/Future Tasks Current Tasks Future Tasks Researching hardware Volume predictions dependant on hardware Power circuit configuration FMEA Future Tasks Finalize power profile