Digital Integrated Circuits© Prentice Hall 1995 Inverter THE INVERTERS.

Slides:



Advertisements
Similar presentations
ELEC 301 Volkan Kursun Design Metrics ECE555 - Volkan Kursun
Advertisements

Digital Integrated Circuits© Prentice Hall 1995 Low Power Design Low Power Design in CMOS.
Elettronica T A.A Digital Integrated Circuits © Prentice Hall 2003 Inverter CMOS INVERTER.
Digital Integrated Circuits A Design Perspective
© Digital Integrated Circuits 2nd Inverter Digital Integrated Circuits A Design Perspective The Inverter Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic.
Courtesy : Prof Andrew Mason CMOS Inverter: DC Analysis By Dr.S.Rajaram, Thiagarajar College of Engineering.
CMOS Family.
Digital Integrated Circuits© Prentice Hall 1995 Devices Jan M. Rabaey The Devices.
Digital Integrated Circuits© Prentice Hall 1995 Devices The MOS Transistor.
ISLAMIC UNIVERSITY OF GAZA Faculty of Engineering Computer Engineering Department EELE3321: Digital Electronics Course Asst. Prof. Mohammed Alhanjouri.
Microelectronic Circuits, Sixth Edition Sedra/Smith Copyright © 2010 by Oxford University Press, Inc. C H A P T E R 13 CMOS Digital Logic Circuits.
Designing Combinational Logic Circuits: Part2 Alternative Logic Forms:
Digital Integrated Circuits A Design Perspective
CMOS Digital Integrated Circuits 1 Lec 7 CMOS Inverters: Dynamic Analysis and Design.
© Digital Integrated Circuits 2nd Inverter CMOS Inverter: Digital Workhorse  Best Figures of Merit in CMOS Family  Noise Immunity  Performance  Power/Buffer.
1 Lecture 4: Transistor Summary/Inverter Analysis Subthreshold MOSFET currents IEEE Spectrum, 7/99, p. 26.
Digital Integrated Circuits© Prentice Hall 1995 Combinational Logic COMBINATIONAL LOGIC.
Field-Effect Transistors 1.Understand MOSFET operation. 2. Understand the basic operation of CMOS logic gates. 3. Make use of p-fet and n-fet for logic.
Power, Energy and Delay Static CMOS is an attractive design style because of its good noise margins, ideal voltage transfer characteristics, full logic.
EE415 VLSI Design THE INVERTER DYNAMICS [Adapted from Rabaey’s Digital Integrated Circuits, ©2002, J. Rabaey et al.]
The CMOS Inverter Slides adapted from:
EGRE 427 Advanced Digital Design Figures from Application-Specific Integrated Circuits, Michael John Sebastian Smith, Addison Wesley, 1997 Chapter 3 ASIC.
Digital Integrated Circuits© Prentice Hall 1995 Inverter THE INVERTERS.
MOS Inverter: Static Characteristics
EE 261 – Introduction to Logic Circuits
Topic 4: Digital Circuits
Mary Jane Irwin ( ) Modified by Dr. George Engel (SIUE)
Mary Jane Irwin ( ) CSE477 VLSI Digital Circuits Fall 2002 Lecture 04: CMOS Inverter (static view) Mary Jane.
EE414 VLSI Design Design Metrics in Design Metrics in VLSI Design [Adapted from Rabaey’s Digital Integrated Circuits, ©2002, J. Rabaey et al.]
1 The Physical Structure (NMOS) Field Oxide SiO2 Gate oxide Field Oxide n+ Al SiO2 Polysilicon Gate channel L P Substrate D S L W (D) (S) Metal n+ (G)
Electronic Circuits Laboratory EE462G Lab #7 NMOS and CMOS Logic Circuits.
Evolution in Complexity Evolution in Transistor Count.
Jan M. Rabaey The Devices Digital Integrated Circuits© Prentice Hall 1995 Introduction.
1. Department of Electronics Engineering Sahand University of Technology NMOS inverter with an n-channel enhancement-mode mosfet with the gate connected.
ECE442: Digital ElectronicsCSUN, Spring-2010, Zahid Design Metrics ECE442: Digital Electronics.
THE INVERTERS. DIGITAL GATES Fundamental Parameters l Functionality l Reliability, Robustness l Area l Performance »Speed (delay) »Power Consumption »Energy.
THE INVERTER [Adapted from Rabaey’s Digital Integrated Circuits, ©2002, J. Rabaey et al.]
© Digital Integrated Circuits 2nd Inverter Modified From "Digital Integrated Circuits", by J. Rabaey, A. Chandrakasan and B. Nikolic. Copyright 1996 UCB.
CSE477 L02 Design Metrics.1Irwin&Vijay, PSU, 2002 ECE 484 VLSI Digital Circuits Fall 2014 Lecture 02: Design Metrics Dr. George L. Engel Adapted from slides.
Outline Introduction CMOS devices CMOS technology CMOS logic structures CMOS sequential circuits CMOS regular structures.
ECE442: Digital ElectronicsSpring 2008, CSUN, Zahid Static CMOS Logic ECE442: Digital Electronics.
1 The Physical Structure (NMOS) Field Oxide SiO2 Gate oxide Field Oxide n+ Al SiO2 Polysilicon Gate channel L P Substrate D S L W (D) (S) Metal n+ (G)
Digital Integrated Circuits© Prentice Hall 1995 Devices Jan M. Rabaey The Devices.
CSE477 L07 Pass Transistor Logic.1Irwin&Vijay, PSU, 2003 CSE477 VLSI Digital Circuits Fall 2003 Lecture 07: Pass Transistor Logic Mary Jane Irwin (
Inverter Chapter 5 The Inverter April 10, Inverter Objective of This Chapter  Use Inverter to know basic CMOS Circuits Operations  Watch for performance.
© Digital Integrated Circuits 2nd Inverter EE5900 Advanced Algorithms for Robust VLSI CAD The Inverter Dr. Shiyan Hu Office: EERC 731 Adapted.
EE141 © Digital Integrated Circuits 2nd Inverter 1 Digital Integrated Circuits A Design Perspective The Inverter Jan M. Rabaey Anantha Chandrakasan Borivoje.
Switch Logic EE141.
Digital Integrated Circuits A Design Perspective
Introduction to MicroElectronics
Electronic Circuits Laboratory EE462G Lab #7 NMOS and CMOS Logic Circuits.
Solid-State Devices & Circuits
Static CMOS Logic Seating chart updates
EE141 © Digital Integrated Circuits 2nd Combinational Circuits 1 A few notes for your design  Finger and multiplier in schematic design  Parametric analysis.
EE415 VLSI Design THE INVERTER [Adapted from Rabaey’s Digital Integrated Circuits, ©2002, J. Rabaey et al.]
EE415 VLSI Design. Read 4.1, 4.2 COMBINATIONAL LOGIC.
Digital Logic Inverter Clasificacion de Circuitos y frecuencia maxima.
Washington State University
Norhayati Soin 05 KEEE 4425 WEEK 3/2 7/29/2005 LECTURE : KEEE 4425 WEEK 3/2 STATIC CHARACTERISTICS OF THE CMOS INVERTERS.
7-1 Integrated Microsystems Lab. EE372 VLSI SYSTEM DESIGNE. Yoon MOS Inverter — All essential features of MOS logic gates DC and transient characteristics.
S!LK silk.kookmin.ac.kr Capstone Design Ⅰ 1. CMOS Inverter 2. SONOS Memory Dae Hwan Kim Jungmin Lee Seungguk Kim.
Lecture 05: Static Behaviour of CMOS Inverter
Mary Jane Irwin ( ) CSE477 VLSI Digital Circuits Fall 2003 Lecture 04: CMOS Inverter (static view) Mary Jane.
EE141 Chapter 5 The Inverter April 10, 2003.
MOS Inverters 1.
CMOS Inverter First Glance
Digital Integrated Circuits A Design Perspective
Mary Jane Irwin ( ) CSE477 VLSI Digital Circuits Fall 2002 Lecture 04: CMOS Inverter (static view) Mary Jane.
Lecture #18 OUTLINE Reading Continue small signal analysis
Presentation transcript:

Digital Integrated Circuits© Prentice Hall 1995 Inverter THE INVERTERS

Digital Integrated Circuits© Prentice Hall 1995 Inverter DIGITAL GATES Fundamental Parameters l Functionality l Reliability, Robustness l Area l Performance »Speed (delay) »Power Consumption »Energy

Digital Integrated Circuits© Prentice Hall 1995 Inverter Noise in Digital Integrated Circuits

Digital Integrated Circuits© Prentice Hall 1995 Inverter DC Operation: Voltage Transfer Characteristic V(x) V(y) V OH V OL V LT V OH V OL f V(y)=V(x) Switching Logic Threshold Nominal Voltage Levels V(y)V(x) VIL VIH dVo/dVi =-1 NML NMH

Digital Integrated Circuits© Prentice Hall 1995 Inverter Mapping between analog and digital signals

Digital Integrated Circuits© Prentice Hall 1995 Inverter Definition of Noise Margins

Digital Integrated Circuits© Prentice Hall 1995 Inverter The Regenerative Property

Digital Integrated Circuits© Prentice Hall 1995 Inverter Fan-in and Fan-out

Digital Integrated Circuits© Prentice Hall 1995 Inverter The Ideal Gate

Digital Integrated Circuits© Prentice Hall 1995 Inverter VTC of Real Inverter

Digital Integrated Circuits© Prentice Hall 1995 Inverter Delay Definitions

Digital Integrated Circuits© Prentice Hall 1995 Inverter Ring Oscillator

Digital Integrated Circuits© Prentice Hall 1995 Inverter Power Dissipation

Digital Integrated Circuits© Prentice Hall 1995 Inverter CMOS INVERTER

Digital Integrated Circuits© Prentice Hall 1995 Inverter The CMOS Inverter: A First Glance As a designer, we can control: -Process (1.2um or 0.5um) -(W, L)p and (W, L)n -Power Supplies -Interconnection type -Fan-in/Fan-out

Digital Integrated Circuits© Prentice Hall 1995 Inverter CMOS Inverters Polysilicon In Out V DD GND PMOS NMOS SMOS 2  um or 0.7um Metal 1 Bulk Contacts Nwell Diffusion (N+) Diffusion (P+)

Digital Integrated Circuits© Prentice Hall 1995 Inverter Switch Model of CMOS Transistor

Digital Integrated Circuits© Prentice Hall 1995 Inverter CMOS Inverter: Steady State Response

Digital Integrated Circuits© Prentice Hall 1995 Inverter CMOS Inverter: Transient Response

Digital Integrated Circuits© Prentice Hall 1995 Inverter CMOS Properties l Full rail-to-rail swing l Symmetrical VTC l Propagation delay function of load capacitance and resistance of transistors l No static power dissipation l Direct path current during switching

Digital Integrated Circuits© Prentice Hall 1995 Inverter Voltage Transfer Characteristic

Digital Integrated Circuits© Prentice Hall 1995 Inverter CMOS Inverter Load Characteristics in = 1 V in = 2 V in = 3 V in = 4 V in = 4 V in = 5 V in = 2 V in = 3 Vout

Digital Integrated Circuits© Prentice Hall 1995 Inverter CMOS Inverter VTC Vin < Vtn -NMOS Off Vin > Vdd – Vtp -PMOS Off PMOS: linear if Vsg –Vtp > Vsd Vo > Vin +Vtp NMOS: Linear if Vgs-Vtn > Vds Vo < Vin –Vtn VOH: PMOS(lin) & NMOS(off) VOL: PMOS(off) & NMOS(lin) VIH: PMOS(sat) & NMOS(lin) VIL: PMOS(lin) & NMOS(sat) VLT: PMOS(sat) & NMOS(sat)

Digital Integrated Circuits© Prentice Hall 1995 Inverter CMOS Inverter VTC VOH: PMOS(lin) & NMOS(off) = Vdd VOL: PMOS(off) & NMOS(lin) = Gnd VIH: PMOS(sat) & NMOS(lin): Solve: VIL: PMOS(lin) & NMOS(sat): Solve:

Digital Integrated Circuits© Prentice Hall 1995 Inverter CMOS Inverter VTC VLT: PMOS(sat) & NMOS(sat): If Vtn = Vtp &  p =  n  VLT = Vdd/2: Gives a symmetric Inverter!

Digital Integrated Circuits© Prentice Hall 1995 Inverter Simulated VTC

Digital Integrated Circuits© Prentice Hall 1995 Inverter Gate Logic Switching Threshold  p // n V LT

Digital Integrated Circuits© Prentice Hall 1995 Inverter MOS Transistor Small Signal Model

Digital Integrated Circuits© Prentice Hall 1995 Inverter Determining V IH and V IL

Digital Integrated Circuits© Prentice Hall 1995 Inverter Propagation Delay

Digital Integrated Circuits© Prentice Hall 1995 Inverter CMOS Inverter: Transient Response

Digital Integrated Circuits© Prentice Hall 1995 Inverter CMOS Inverter Propagation Delay V DD V out V in = V DD C L I av t pHL = C L V swing /2 I av C L k n V DD ~

Digital Integrated Circuits© Prentice Hall 1995 Inverter CMOS Inverter Propagation Delay V DD V out V in = V DD C L Vdd Vo Time VH Vdd-Vtn to t1 t2 VL NMOS(sat) NMOS(lin)

Digital Integrated Circuits© Prentice Hall 1995 Inverter CMOS Inverter Propagation Delay Similarly:

Digital Integrated Circuits© Prentice Hall 1995 Inverter CMOS Inverter Rise & Fall Time Similarly, Rise Time: Similarly, Fall Time:

Digital Integrated Circuits© Prentice Hall 1995 Inverter Computing the Capacitances

Digital Integrated Circuits© Prentice Hall 1995 Inverter CMOS Inverters Polysilicon In Out Metal1 V DD GND PMOS NMOS 1.2  m =2

Digital Integrated Circuits© Prentice Hall 1995 Inverter The Miller Effect

Digital Integrated Circuits© Prentice Hall 1995 Inverter Computing the Capacitances

Digital Integrated Circuits© Prentice Hall 1995 Inverter Impact of Rise Time on Delay

Digital Integrated Circuits© Prentice Hall 1995 Inverter Delay as a function of V DD

Digital Integrated Circuits© Prentice Hall 1995 Inverter Where Does Power Go in CMOS?

Digital Integrated Circuits© Prentice Hall 1995 Inverter Dynamic Power Dissipation Energy/transition = C L * V dd 2 Power = Energy/transition *f =C L * V dd 2 * f Need to reduce C L, V dd, andf to reduce power. VinVout C L Vdd Not a function of transistor sizes!

Digital Integrated Circuits© Prentice Hall 1995 Inverter Impact of Technology Scaling

Digital Integrated Circuits© Prentice Hall 1995 Inverter Technology Evolution

Digital Integrated Circuits© Prentice Hall 1995 Inverter Technology Scaling (1) Minimum Feature Size

Digital Integrated Circuits© Prentice Hall 1995 Inverter Technology Scaling (2) Number of components per chip

Digital Integrated Circuits© Prentice Hall 1995 Inverter Propagation Delay Scaling

Digital Integrated Circuits© Prentice Hall 1995 Inverter Technology Scaling Models

Digital Integrated Circuits© Prentice Hall 1995 Inverter Scaling Relationships for Long Channel Devices

Digital Integrated Circuits© Prentice Hall 1995 Inverter Scaling of Short Channel Devices