Presentation is loading. Please wait.

Presentation is loading. Please wait.

Designing Combinational Logic Circuits: Part2 Alternative Logic Forms:

Similar presentations


Presentation on theme: "Designing Combinational Logic Circuits: Part2 Alternative Logic Forms:"— Presentation transcript:

1 Designing Combinational Logic Circuits: Part2 Alternative Logic Forms:
EE141 Designing Combinational Logic Circuits: Part2 Alternative Logic Forms: Ratio Logic Pass-Transistor Dynamic Logic

2 EE141 Ratio Logic V DD SS PDN In 1 2 3 F R L Load Resistive Depletion PMOS (a) resistive load (b) depletion load NMOS (c) pseudo-NMOS T < 0 Goal: to reduce the number of devices over complementary CMOS

3 Ratio Logic V PDN In F R Load Resistive N transistors + Load • V = V =
EE141 Ratio Logic V DD SS PDN In 1 2 3 F R L Load Resistive N transistors + Load • V OH = V OL = PN + R • Assymetrical response • Static power consumption • t pL = 0.69 R C

4 Active Loads V In F PDN Depletion Load PMOS depletion load NMOS
EE141 Active Loads V DD SS In 1 2 3 F PDN Depletion Load PMOS depletion load NMOS pseudo-NMOS T < 0

5 EE141 Pseudo-NMOS

6 Pseudo-NMOS VTC V [V] W/L = 4 = 2 = 1 = 0.25 = 0.5 EE141 0.0 0.5 1.0
1.5 2.0 2.5 3.0 V in [V] o u t W/L p = 4 = 2 = 1 = 0.25 = 0.5

7 Improved Loads Adaptive Load A B C D F M 1 2 >> M Enable V EE141
DD Adaptive Load

8 Even Better Noise Immunity
EE141 Even Better Noise Immunity V DD SS PDN1 Out PDN2 A B M1 M2 Differential Cascode Voltage Switch Logic (DCVSL)

9 EE141 DCVSL Example B A Out XOR-NXOR gate

10 DCVSL Transient Response
EE141 DCVSL Transient Response 0.2 0.4 0.6 0.8 1.0 -0.5 0.5 1.5 2.5 A B [V] e g A B a t o l V A , B A,B Time [ns]

11 Pass-Transistor Logic
EE141 Pass-Transistor Logic I n p u t s Switch Network Out A B • N transistors • No static consumption

12 EE141 Example: AND Gate

13 NMOS-Only Logic In Out x EE141 [V] e g a t l o V Time [ns] 3.0 2.0 1.0
0.0 0.5 1 1.5 2 Time [ns]

14 NMOS-only Switch V does not pull up to 2.5V, but 2.5V - V
EE141 NMOS-only Switch C = 2.5 V C = 2.5 V M 2 A = 2.5 V A = 2.5 V B M B n C M 1 L V does not pull up to 2.5V, but 2.5V - V B TN Threshold voltage loss causes static power consumption NMOS has higher threshold than PMOS (body effect)

15 NMOS Only Logic: Level Restoring Transistor
EE141 NMOS Only Logic: Level Restoring Transistor V DD V Level Restorer DD M r B M 2 X A M n Out M 1 • Advantage: Full Swing • Restorer adds capacitance, takes away pull down current at X • Ratio problem

16 Restorer Sizing Upper limit on restorer size
EE141 Restorer Sizing 3.0 100 200 300 400 500 0.0 1.0 2.0 Upper limit on restorer size Pass-transistor pull-down can have several transistors in stack [V] W / L =1.75/0.25 r e g W / L =1.50/0.25 a r t l o V W / L =1.25/0.25 W / L =1.0/0.25 r r Time [ps]

17 Solution 2: Single Transistor Pass Gate with VT=0
EE141 Solution 2: Single Transistor Pass Gate with VT=0 V DD V DD 0V 2.5V V 0V Out DD 2.5V WATCH OUT FOR LEAKAGE CURRENTS

18 Complementary Pass Transistor Logic
EE141 Complementary Pass Transistor Logic

19 Solution 3: Transmission Gate
EE141 Solution 3: Transmission Gate C C A B A B C C C = 2.5 V A = 2.5 V B C L C = 0 V

20 Resistance of Transmission Gate
EE141 Resistance of Transmission Gate

21 Pass-Transistor Based Multiplexer
EE141 Pass-Transistor Based Multiplexer S S VDD GND In1 S S In2

22 EE141 Transmission Gate XOR B B M2 A A F M1 M3/M4 B B

23 Delay in Transmission Gate Networks
EE141 Delay in Transmission Gate Networks V n-1 n C 2.5 In 1 i i+1 V 1 i-1 C 2.5 i i+1 R eq C (a) (b) m R eq R eq R eq In C C C C (c)

24 EE141 Delay Optimization

25 Transmission Gate Full Adder
EE141 Transmission Gate Full Adder Similar delays for sum and carry

26 Dynamic Logic

27 EE141 Dynamic CMOS In static circuits at every point in time (except when switching) the output is connected to either GND or VDD via a low resistance path. fan-in of n requires 2n (n N-type + n P-type) devices Dynamic circuits rely on the temporary storage of signal values on the capacitance of high impedance nodes. requires on n + 2 (n+1 N-type + 1 P-type) transistors

28 Dynamic Gate Two phase operation Precharge (CLK = 0)
EE141 Dynamic Gate Out Clk A B C Mp Me Clk Mp Out CL In1 In2 PDN In3 Clk Me For class handout Two phase operation Precharge (CLK = 0) Evaluate (CLK = 1)

29 Dynamic Gate Two phase operation Precharge (Clk = 0)
EE141 Dynamic Gate Out Clk A B C Mp Me off Clk Mp on 1 Out CL ((AB)+C) In1 In2 PDN In3 Clk Me off For lecture Evaluate transistor, Me, eliminates static power consumption on Two phase operation Precharge (Clk = 0) Evaluate (Clk = 1)

30 EE141 Conditions on Output Once the output of a dynamic gate is discharged, it cannot be charged again until the next precharge operation. Inputs to the gate can make at most one transition during evaluation. Output can be in the high impedance state during and after evaluation (PDN off), state is stored on CL This behavior is fundamentally different than the static counterpart that always has a low resistance path between the output and one of the power rails.

31 Properties of Dynamic Gates
EE141 Properties of Dynamic Gates Logic function is implemented by the PDN only number of transistors is N + 2 (versus 2N for static complementary CMOS) Full swing outputs (VOL = GND and VOH = VDD) Non-ratioed - sizing of the devices does not affect the logic levels Faster switching speeds reduced load capacitance due to lower input capacitance (Cin) reduced load capacitance due to smaller output loading (Cout) no Isc, so all the current provided by PDN goes into discharging CL CL being lower also contributes to power savings

32 Properties of Dynamic Gates
EE141 Properties of Dynamic Gates Overall power dissipation usually higher than static CMOS no static current path ever exists between VDD and GND (including Psc) no glitching higher transition probabilities extra load on Clk PDN starts to work as soon as the input signals exceed VTn, so VM, VIH and VIL equal to VTn low noise margin (NML) Needs a precharge/evaluate clock

33 Issues in Dynamic Design 1: Charge Leakage
EE141 Issues in Dynamic Design 1: Charge Leakage CLK Clk Mp Out CL A Evaluate VOut Clk Me Precharge leakage sources are reverse-biased diode and the sub-threshold leakage of the NMOS pulldown device. Charge stored on CL will leak away with time (input in low state during evaluation) Requires a minimum clock rate - so not good for low performance products such as watches (or when have conditional clocks) PMOS precharge device also contributes some leakage due to reverse bias diode and subthreshold conduction that, to some extent, offsets the leakage due to the pull down paths. Leakage sources Dominant component is subthreshold current

34 Solution to Charge Leakage
EE141 Solution to Charge Leakage Keeper Clk Mp Mkp CL A Out B Clk Me During precharge, Out is VDD and inverter out is GND, so keeper is on During evaluation if PDN is off, the keeper compensates for drained charge due to leakage. If PDN is on, there is a fight between the PDN and the PUN - circuit is ratioed so PDN wins, eventually Note Psc during switching period when PDN and keeper are both on simultaneously Same approach as level restorer for pass-transistor logic

35 Issues in Dynamic Design 2: Charge Sharing
EE141 Issues in Dynamic Design 2: Charge Sharing Charge stored originally on CL is redistributed (shared) over CL and CA leading to reduced robustness Clk Mp Out CL A CA B=0 CA initially discharged and CL fully charged. CB Clk Me

36 Charge Sharing Example
EE141 Charge Sharing Example Clk Out CL=50fF A A Ca=15fF B Cb=15fF B B !B Cc=15fF Cd=10fF Out = A xor B xor C What is the worst case change in voltage on node Out - assume all inputs are low during precharge and all internal capacitances are initially 0V Worst case is obtained by exposing the maximum amount of internal capacitance to the output node during evaluation. This happens when !A B C or A !B C 30/(30+50) * 2.5 V = 0.94 V so the output drops to = 1.56 V C C Clk

37 Charge Sharing V Clk M Out C A M X C B = M C Clk M EE141 DD p L a a b
M b C b Clk M e

38 Solution to Charge Redistribution
EE141 Solution to Charge Redistribution Clk Clk Mp Mkp Out A B Clk Me Precharge internal nodes using a clock-driven transistor (at the cost of increased area and power)

39 Issues in Dynamic Design 3: Backgate Coupling
EE141 Issues in Dynamic Design 3: Backgate Coupling Clk Mp Out1 =1 Out2 =0 CL1 CL2 In A=0 B=0 Due to capacitive backgate coupling between the internal and output node of the static gate and the output of the dynamic gate, Out1 voltage reduces Clk Me Dynamic NAND Static NAND

40 Backgate Coupling Effect
EE141 Backgate Coupling Effect Out1 Voltage Clk Out1 overshoots Vdd (2.5V) due to clock feedthrough And Out2 never quite makes it to GND Out2 In Time, ns

41 Issues in Dynamic Design 4: Clock Feedthrough
Coupling between Out and Clk input of the precharge device due to the gate to drain capacitance. So voltage of Out can rise above VDD. The fast rising (and falling edges) of the clock couple to Out. Clk Mp Out CL A B Clk Danger is that signal levels can rise enough above VDD that the normally reverse-biased junction diodes become forward-biased causing electrons to be injected into the substrate. Me

42 Clock Feedthrough Clock feedthrough Clk Out In1 In2 In3 In & Clk In4
Voltage In4 Out Clk Time, ns Clock feedthrough

43 Other Effects Capacitive coupling Substrate coupling
EE141 Other Effects Capacitive coupling Substrate coupling Minority charge injection Supply noise (ground bounce)

44 Cascading Dynamic Gates
EE141 Cascading Dynamic Gates V Clk Clk Clk Mp Mp Out2 Out1 In In Out1 VTn Clk Clk Me Me Out2 V Out2 should remain at VDD since Out1 transitions to 0 during evaluation. However, since there is a finite propagation delay for the input to discharge Out1 to GND, the second output also starts to discharge. The second dynamic inverter turns off (PDN) when Out1 reaches VTn. Setting all inputs of the second gate to 0 during precharge will fix it. Correct operation is guaranteed (ignoring charge redistribution and leakage) as long as the inputs can only make a single 0 -> 1 transition during the evaluation period t Only 0  1 transitions allowed at inputs!

45 Domino Logic Clk Clk Out1 Out2 In1 In4 PDN In2 PDN In5 In3 Clk Clk Mp
EE141 Domino Logic Clk Mp Mkp Clk Mp Out1 Out2 1  1 1  0 0  0 0  1 In1 In4 PDN In2 PDN In5 In3 Ensures all inputs to the Domino gate are set to 0 at the end of the precharge period. Hence, the only possible transition during evaluation is 0 -> 1 Clk Me Clk Me

46 Why Domino? Like falling dominos! Ini PDN Inj Ini Inj PDN Ini PDN Inj
EE141 Why Domino? Ini PDN Inj Ini Inj PDN Ini PDN Inj Ini PDN Inj Clk Clk Like falling dominos!

47 Properties of Domino Logic
EE141 Properties of Domino Logic Only non-inverting logic can be implemented Very high speed static inverter can be skewed, only L-H transition Input capacitance reduced – smaller logical effort First 32 bit micro (BellMAC 32) was designed in Domino logic Now a rather rare design style due to non-inverting logic only

48 Designing with Domino Logic
EE141 Designing with Domino Logic V DD V DD V DD Clk M Clk M p p M Out1 r Out2 In 1 In PDN In PDN 2 4 In 3 Can be eliminated! Clk M Clk M e e Inputs = 0 during precharge

49 EE141 Footless Domino The first gate in the chain needs a foot switch Precharge is rippling – short-circuit current A solution is to delay the clock for each stage

50 Differential (Dual Rail) Domino
EE141 Differential (Dual Rail) Domino off on Clk Clk Mp Mkp Mkp Mp Out = AB Out = AB A !A !B B AND/NAND differential logic gate. The inputs and their complements come from other differential DR gates and thus all inputs are low during precharge and make a conditional transition from 0 to 1. Annotations show state during evaluate cycle (CLK = 1) Expensive - but can implement any arbitrary function. Use significant power since they have a guaranteed transition every single clock cycle (regardless of signal statistics, since either Out or !Out will transition from 0 to 1). Not ratioed (even though have a cross-coupled PMOS pair) Clk Me Solves the problem of non-inverting logic

51 EE141 np-CMOS Clk Me Clk Mp Out1 1  1 1  0 In4 PUN In1 In5 In2 PDN 0  0 0  1 In3 Out2 (to PDN) Clk Mp Also called zipper logic - In4 and In5 must be from PDN’s DEC alpha uses np-CMOS logic (Dobberpuhl) Have to size the PUN’s to equalize the delay to that of the PDN’s Really dense layouts and very high speed (20% faster than domino with the correct sizing) Reduced noise margin (as with any dynamic gate) Have two clock signals to generate and route - CLK and !CLK Clk Me Only 0  1 transitions allowed at inputs of PDN Only 1  0 transitions allowed at inputs of PUN

52 NORA Logic Clk Clk Out1 In4 PUN In1 In5 In2 PDN In3 Out2 (to PDN) Clk
EE141 NORA Logic Clk Me Clk Mp Out1 1  1 1  0 In4 PUN In1 In5 In2 PDN 0  0 0  1 In3 Out2 (to PDN) Clk Mp Clk Me NORA - no race CMOS to other PDN’s to other PUN’s WARNING: Very sensitive to noise!

53 Homework 6 Design (in Sue) a CPL version of the 16-bit ripple adder using transistors from the AMI 0.6 process. Simulate in Hspice and measure the worst case delay and average power/MHz. Design (in Sue and simulate) a Domino version of the same ripple adder – measure the w.c. delay and average power/MHz. (How do these designs compare to Static CMOS?)


Download ppt "Designing Combinational Logic Circuits: Part2 Alternative Logic Forms:"

Similar presentations


Ads by Google