Nucleic Acids Examples: Structure: RNA (ribonucleic acid)

Slides:



Advertisements
Similar presentations
From Gene to Protein How Genes Work
Advertisements

AP Biology From Gene to Protein How Genes Work.
AP Biology Nucleic acids AP Biology Nucleic Acids Information storage.
Nucleic acids Nucleic Acids Information storage.
AP Biology Nucleic acids AP Biology Nucleic Acids.
Protein Synthesis Making Proteins
WARMUP Give three differences and three similarities between DNA and RNA.
Regents Biology Protein Synthesis Making Proteins.
AP Biology Nucleic acids AP Biology Nucleic Acids Information storage.
DNA gets all the glory, but proteins do all the work!
Protein Synthesis Notes
From Gene to Protein.
Transcription.
Chapter 14. From Gene to Protein Biology 114.
Ch. 17:From Gene to Protein
Chapter 17~ From Gene to Protein Protein Synthesis: overview One gene-one enzyme hypothesis (Beadle and Tatum) One gene-one polypeptide (protein) hypothesis.
AP Biology From Gene to Protein How Genes Work.
AP Biology From Gene to Protein How Genes Work.
Ch. 17 Lecture Flow of genetic information in a cell How do we move information from DNA to proteins? transcription translation replication protein RNA.
AP Biology From Gene to Protein How Genes Work AP Biology What do genes code for? proteinscellsbodies How does DNA code for cells & bodies?  how are.
Protein Synthesis Making Proteins  Bodies are made up of cells  All cells run on a set of instructions spelled out in DNA Bodies  Cells  DNA.
AP Biology From Gene to Protein How Genes Work.
MCC BP Based on work by K. Foglia Chapter 17. From Gene to Protein.
Protein Synthesis Making Proteins
RNA & Protein Synthesis.
KEY CONCEPT DNA structure is the same in all organisms.
AP Biology Lecture #33 Translation.
AP Biology From Gene to Protein How Genes Work.
From Gene to Protein How Genes Work
AP Biology Warmup 11/12 Differentiate a codon and an anitcodon. Which do you use to read the following chart?
AP Biology From Gene to Protein How Genes Work.
Relate the concept of the gene to the sequence of nucleotides in DNA.
AP Details for Protein Synthesis 2014 From gene to protein.
AP Biology Nucleic Acids Information storage Energy Transfer.
CH : DNA, RNA, and Protein Section Objectives: Relate the concept of the gene to the sequence of nucleotides in DNA. Sequence the steps involved.
AP Biology Chapter 17. From Gene to Protein.
AP Biology From Gene to Protein How Genes Work.
AP Biology From Gene to Protein How Genes Work.
AP Biology From Gene to Protein How Genes Work.
AP Biology From Gene to Protein How Genes Work AP Biology What do genes code for? proteinscellsbodies How does DNA code for cells & bodies?  how are.
Chapter 8: From DNA to Protein Section Transcription
From Gene to Protein How Genes Work
Protein Synthesis.
Regents Biology From gene to protein: transcription translation protein.
From Gene to Protein How Genes Work
AP Biology From Gene to Protein How Genes Work AP Biology What do genes code for? proteinscellsbodies How does DNA code for cells & bodies?  how are.
Unit 2: Molecular Genetics Bi 1d: Central Dogma Bi 5a: DNA, RNA, protein structure and function Bi 5b: Base pairing rules.
Protein Synthesis Making Proteins
AP Biology From Gene to Protein How Genes Work.
What is DNA? What does it do? DNA The Genetic Material Chapter 12: DNA.
AP Biology Nucleic acids AP Biology Nucleic Acids Information storage.
AP Biology Nucleic Acids AP Biology Nucleic acids.
AP Biology Nucleic acids AP Biology Nucleic Acids Information storage.
AP Biology From Gene to Protein How Genes Work.
From Gene to Protein proteinscellsbodies How does DNA code for cells & bodies? DNA.
D.N.A 1. The information carried by a DNA molecule is in
AP Biology Chapter 17. From Gene to Protein.
From Gene to Protein How Genes Work.
From Gene to Protein How Genes Work
from nucleic acid language to amino acid language
From Gene to Protein How Genes Work (Ch. 17).
Translation Unit 5B.4.
From Gene to Protein How Genes Work
Ch 17 - From Gene to Protein
From Gene to Protein How Genes Work
From Gene to Protein How Genes Work
From Gene to Protein Chapter 17.
from nucleic acid language to amino acid language
Transcription Credit for the original presentation is given to Mrs. Boyd, Westlake High School.
from nucleic acid language to amino acid language to PROTEIN language
Presentation transcript:

Nucleic Acids Examples: Structure: RNA (ribonucleic acid) single helix DNA (deoxyribonucleic acid) double helix Structure: monomers = nucleotides DNA RNA

Nucleotides 3 parts nitrogen base (C-N ring) pentose sugar (5C) ribose in RNA deoxyribose in DNA phosphate (PO4) group Nitrogen base I’m the A,T,C,G or U part! DNA & RNA are negatively charged: Don’t cross membranes. Contain DNA within nucleus Need help transporting mRNA across nuclear envelope. Also use this property in gel electrophoresis. Are nucleic acids charged molecules?

Types of nucleotides 2 types of nucleotides different nitrogen bases Purine = AG Pure silver! 2 types of nucleotides different nitrogen bases purines double ring N base adenine (A) guanine (G) pyrimidines single ring N base cytosine (C) thymine (T) uracil (U)

Dangling bases? Why is this important? Nucleic polymer Backbone sugar to PO4 bond phosphodiester bond new base added to sugar of previous base polymer grows in one direction N bases hang off the sugar-phosphate backbone Dangling bases? Why is this important?

Pairing of nucleotides Nucleotides bond between DNA strands H bonds purine :: pyrimidine A :: T 2 H bonds G :: C 3 H bonds The 2 strands are complementary. One becomes the template of the other & each can be a template to recreate the whole molecule. Matching bases? Why is this important?

H bonds? Why is this important? DNA molecule Double helix H bonds between bases join the 2 strands A :: T C :: G H bonds = biology’s weak bond • easy to unzip double helix for replication and then re-zip for storage • easy to unzip to “read” gene and then re-zip for storage H bonds? Why is this important?

Matching halves? Why is this a good system? Copying DNA Replication 2 strands of DNA helix are complementary have one, can build other have one, can rebuild the whole when cells divide, they must duplicate DNA exactly for the new “daughter” cells Why is this a good system? Matching halves? Why is this a good system?

Interesting note… Ratio of A-T::G-C affects stability of DNA molecule 2 H bonds vs. 3 H bonds biotech procedures more G-C = need higher T° to separate strands high T° organisms many G-C parasites many A-T (don’t know why) At the foundation of biology is chemistry!!

From Gene to Protein How Genes Work 2007-2008

DNA gets all the glory, but proteins do all the work! The “Central Dogma” Flow of genetic information in a cell How do we move information from DNA to proteins? transcription translation DNA RNA protein trait To get from the chemical language of DNA to the chemical language of proteins requires 2 major stages: transcription and translation DNA gets all the glory, but proteins do all the work! replication

from DNA nucleic acid language to RNA nucleic acid language Transcription from DNA nucleic acid language to RNA nucleic acid language 2007-2008

DNA RNA RNA ribose sugar N-bases single stranded lots of RNAs uracil instead of thymine U : A C : G single stranded lots of RNAs mRNA, tRNA, rRNA, siRNA… transcription DNA RNA

Transcription Making mRNA transcribed DNA strand = template strand untranscribed DNA strand = coding strand same sequence as RNA synthesis of complementary RNA strand transcription bubble enzyme RNA polymerase coding strand 3 A G C A T C G T 5 A G A A A G T C T T C T C A T A C G DNA T 3 C G T A A T 5 G G C A U C G U T 3 C unwinding G T A G C A rewinding mRNA RNA polymerase template strand build RNA 53 5

RNA polymerases 3 RNA polymerase enzymes RNA polymerase 1 only transcribes rRNA genes makes ribosomes RNA polymerase 2 transcribes genes into mRNA RNA polymerase 3 only transcribes tRNA genes each has a specific promoter sequence it recognizes

Matching bases of DNA & RNA Match RNA bases to DNA bases on one of the DNA strands C U G A G U G U C U G C A A C U A A G C RNA polymerase U 5' A 3' G A C C T G G T A C A G C T A G T C A T C G T A C C G T

Eukaryotic genes have junk! Eukaryotic genes are not continuous exons = the real gene expressed / coding DNA introns = the junk inbetween sequence introns come out! intron = noncoding (inbetween) sequence eukaryotic DNA exon = coding (expressed) sequence

mRNA splicing Post-transcriptional processing eukaryotic mRNA needs work after transcription primary transcript = pre-mRNA mRNA splicing edit out introns make mature mRNA transcript eukaryotic RNA is about 10% of eukaryotic gene. intron = noncoding (inbetween) sequence ~10,000 bases eukaryotic DNA exon = coding (expressed) sequence pre-mRNA primary mRNA transcript ~1,000 bases mature mRNA transcript spliced mRNA

Splicing must be accurate No room for mistakes! a single base added or lost throws off the reading frame AUGCGGCTATGGGUCCGAUAAGGGCCAU AUGCGGUCCGAUAAGGGCCAU AUG|CGG|UCC|GAU|AAG|GGC|CAU Met|Arg|Ser|Asp|Lys|Gly|His AUGCGGCTATGGGUCCGAUAAGGGCCAU AUGCGGGUCCGAUAAGGGCCAU AUG|CGG|GUC|CGA|UAA|GGG|CCA|U Met|Arg|Val|Arg|STOP|

from nucleic acid language to amino acid language Translation from nucleic acid language to amino acid language 2007-2008

How does mRNA code for proteins? TACGCACATTTACGTACGCGG DNA 4 ATCG AUGCGUGUAAAUGCAUGCGCC mRNA 4 AUCG ? Met Arg Val Asn Ala Cys Ala protein 20 How can you code for 20 amino acids with only 4 nucleotide bases (A,U,G,C)?

mRNA codes for proteins in triplets TACGCACATTTACGTACGCGG DNA codon AUGCGUGUAAAUGCAUGCGCC mRNA AUGCGUGUAAAUGCAUGCGCC mRNA ? Met Arg Val Asn Ala Cys Ala protein

WHYDIDTHEREDBATEATTHEFATRAT WHYDIDTHEREDBATEATTHEFATRAT 1960 | 1968 Cracking the code Nirenberg & Khorana Crick determined 3-letter (triplet) codon system WHYDIDTHEREDBATEATTHEFATRAT WHYDIDTHEREDBATEATTHEFATRAT Nirenberg (47) & Khorana (17) determined mRNA–amino acid match added fabricated mRNA to test tube of ribosomes, tRNA & amino acids created artificial UUUUU… mRNA found that UUU coded for phenylalanine

The code Code for ALL life! Code is redundant Start codon Stop codons strongest support for a common origin for all life Code is redundant several codons for each amino acid 3rd base “wobble” Why is the wobble good? Strong evidence for a single origin in evolutionary theory. Start codon AUG methionine Stop codons UGA, UAA, UAG

How are the codons matched to amino acids? 3 5 DNA TACGCACATTTACGTACGCGG 5 3 mRNA AUGCGUGUAAAUGCAUGCGCC codon 3 5 UAC Met GCA Arg tRNA CAU Val anti-codon amino acid

Protein Synthesis in Prokaryotes Bacterial chromosome Protein Synthesis in Prokaryotes Transcription mRNA Psssst… no nucleus! Cell membrane Cell wall 2007-2008

Prokaryote vs. Eukaryote genes Prokaryotes DNA in cytoplasm circular chromosome naked DNA no introns Eukaryotes DNA in nucleus linear chromosomes DNA wound on histone proteins introns vs. exons Walter Gilbert hypothesis: Maybe exons are functional units and introns make it easier for them to recombine, so as to produce new proteins with new properties through new combinations of domains. Introns give a large area for cutting genes and joining together the pieces without damaging the coding region of the gene…. patching genes together does not have to be so precise. introns come out! intron = noncoding (inbetween) sequence eukaryotic DNA exon = coding (expressed) sequence

Translation in Prokaryotes Transcription & translation are simultaneous in bacteria DNA is in cytoplasm no mRNA editing ribosomes read mRNA as it is being transcribed

Translation: prokaryotes vs. eukaryotes Differences between prokaryotes & eukaryotes time & physical separation between processes takes eukaryote ~1 hour from DNA to protein no RNA processing