Micromouse 296 By Lemmings. Introductions  Vicky- coordinator, software oriented  Bryce-morale booster, software oriented  Ruffer-time keeper, hardware.

Slides:



Advertisements
Similar presentations
Microprocessor Motor Control Spring Introduction  Stamp projects Robots  Sensors  Motor control  Logic Rocketry  Reading acceleration (“g”
Advertisements

A 296 MicroMouse project By Brian Kuriyama. Profit!
MicroMouse Proposal Presentation Team: Amaze Me. Introduction Members and roles Brandon Gibu Brandon Gibu Updating webpage Ah Ram Kim Ah Ram Kim Contacting.
Proposal Presentation EE 396 – Micromouse Spring 2008 Saturday, February 9, 2008 Donald Kim Lab - POST 214.
Ramrod IV Micromouse 396. The Team  Andrew Igarashi – Programming  Kevin Li – Hardware  Amy Maruyama – Hardware  Stephen Nakamura – Hardware  Quang.
A fully autonomous robot designed to navigate and solve a maze.
The Pied Pipers Alyssa Visitacion Ken Shum Joanne Flores.
The goals of Micromouse: to build an autonomous “mouse” Mouse should be able to navigate and solve any given maze Mouse should be no bigger than 25.
Design Presentation The Prodigy. Introduction Group Members: Dale Balsis Tyson Seto-Mook Calvin Umeda Keoni Wasano.
Design Presentation Fast D.A.D.I.. Team Members D - ale Balsis A - aron Tsutsumi D - ennis How I - kaika Ramos.
MICROMOUSE 2006 Version: Meat & Potatoes. Alex Zamora Tyson Seto-Mook Mike Manzano Alex de Angelis Aaron Fujimoto The Team:
Ramrod III Micro mouse. The Team  Andrew Igarashi – software  Kevin Li – hardware  Stephen Nakamura – hardware  Quang Ngu – software.
Ramrod III Micro mouse. The Team  Andrew Igarashi – Hardware  Kevin Li – Programming  Stephen Nakamura – Hardware  Quang Ngu - Programming.
Preliminary Design Review Micromouse EE 296 Spring 2008.
EE 296 TEAM “DA KINE” MICROMOUSE PROJECT PROPOSAL Team members: Software Group - Henry, James Roles : tracking, mapping, guidance, interface Hardware Group.
Ramrod III Micro mouse. The Team  Andrew Igarashi – Hardware  Kevin Li – Programming  Stephen Nakamura – Hardware  Quang Ngu - Programming.
Micromouse Team:. Team Members Kanoa Jou (Leader) Ryan Sato (Organizer) KiWoon Ahn (Organizer) Brett Ikei (Recorder)
EE396 Project Micromouse Team: Ocha. Team Members Kanoa Jou (Programmer) Ryan Sato (Hardware) KiWoon Ahn (Recorder) Alan Do (Programmer)
Team 4 Shane Sunada – Project Leader Malcolm Menor – Project Manager Nathan Umeda – Technical Supervisor Joseph Longhi – Documentation Preliminary Design.
FINAL PRESENTATION Lost Café 66 EE 296 5/6/2004. Introduction of Team Team Leader: Arthur Phanphengdy Members: Quincy Quach Kang Lu Jackson Ng.
‘Iole o Mãnoa Mouse of Mãnoa. Team Members Jeff Fines Designer, Fabricator, Programmer & Thomas Matsushima Designer, Fabricator, Programmer.
Curry Mouse EE 296 Project Proposal Presentation February 11, 2006.
‘Iole o Mãnoa Mouse of Mãnoa. Team Members Jeff Fines Designer, Fabricator, Programmer & Thomas Matsushima Designer, Fabricator, Programmer.
CheezStix! EE 396 Micromouse Spring 2007 Proposal Presentation.
Micromouse 296 Final Presentation Fall 2008 Group: Rabbitwagon.
Amaze Me Final Presentation May 4, Introduction of Team Amaze Me Team Members –John Miyajima –Brandon Gibu –Justin Ogata –Ah Ram Kim.
Preliminary Design Review
KTD Micromouse Overview Team Goals Approach Outstanding Problems Future Solutions Final Status.
take your JACKET OFF KELLIESCOTT KENDALLJAYSON Final Presentation  Members:  Jayson Nakakura: Chassis Design and Fabrication  Kellie Murakami: Circuitry.
The Pied Pipers Joanne Flores Ken Shum Alyssa Visitacion.
Team P.A.C.K men EE 296 Project. Introduction to team P.A.C.K men Paul Linden – Systems specialist. Aaron Lake – Power specialist. Chris McLeod – Hardware.
Design Review Presentation Lost Caf é 66. Introduction of Team Team Leader: Arthur Phanphengdy Members: Quincy Quach Kang Lu Jackson Ng Team Name: Lost.
EE 296-Micromouse Spring 2008 Team: CheeHeePono! Members: Mitchell La Puente Travis Suemori Travis Suemori William Chang William Chang Ashley Tomita Ashley.
Meat and Potatoes Micromouse Team Introduction ► Aaron Fujimoto ► Alex DeAngelis ► Alex Zamora ► Mike Manzano ► Tyson Seto-Mook.
TAKE YOUR JACKET OFF! Proposal Presentation  Members:  Jayson Nakakura: Chassis Design and Fabrication  Kellie Murakami: Circuitry Design and Fabrication.
M & M EE 296 Final Presentation Spring 2004 Presentation Overview Team Member Introduction Project Overview Overall Design Description Final Project.
Micromouse 296 By Lemmings. Introductions  Vicky- coordinator, software/hardware  Bryce-morale booster, software/hardware  Ruffer-time keeper, software/hardware.
1 Team Amaze Me (Micromouse 296/396) Brandon Gibu Chad Higa John Miyajima Justin Ogata (February 9, 2008) Fig. 1.1: Amaze Me 1.0Fig. 1.3: *Herbie the Mousebot*
("/(o_O)\") RaWr! Final Presentation May 9, 2006.
Final Presentation for x96 Projects 9:00 AM – 11:30 AM Thursday, 3 May 2007 Donald Kim Lab, POST 214 Team Raiton Denki No Jutsu Project Micromouse.
Micromouse Spring 2006 K A L The Pied Pipers. The Pied Pipers: Joanne – Programming Ken – Hardware Alyssa – Hardware Introduction of Team and Roles.
Fast D.A.D.I. Team Members Dale Balsis Aaron Tsutsumi Dennis How Ikaika Ramos.
("/(o_O)\") RaWr! Proposal Presentation February
Ramrod IV Micromouse 396. The Team  Andrew Igarashi – Programming  Kevin Li – Hardware  Amy Maruyama – Hardware  Stephen Nakamura – Hardware  Quang.
Central Power Mouse Group Members: Stacey Mitani Jeremy Perron (team leader) Erica Salvador Reid Ueda.
Micromouse Team:. Team Members Kanoa Jou Ryan Sato KiWoon Ahn Brett Ikei.
Final Presentation EE 396 – Micromouse Spring 2008 Friday, May 9, 2008 Donald Kim Lab - POST 214.
Preliminary Design Review EE 296 – Micromouse Spring 2007.
M & M EE 296 Project Spring 2004 Alex Gomera Sophomore: electrophysics?!?! Favorite EE Teacher: F. Koide I hope to be like that man 
Team Asphalt Kellen King Ikaika Ramos Brad Centeno.
Preliminary Design Review EE 296: Micro Mouse Spring 2007.
Team P.A.C.K men EE 296 Project. Chris Mcleod Hardware Specialist.
MicroMouse Final Presentation Jill Kobashigawa Min Mo Jon Shindo Christy Kaneshiro.
EE 296 Team Da Kine James Cuaresma – Software Wesley Mina - Hardware Regi Morales - Hardware Henry Do - Software.
The goals of Micromouse: to build an autonomous “mouse” Mouse should be able to navigate and solve any given maze Mouse should be no bigger than 25.
Curry Mouse EE296 Final Presentation Wednesday, May 10, 2006.
The goals of Micromouse: to build an autonomous “mouse” Mouse should be able to navigate and solve any given maze Mouse should be no bigger than 25.
KTD Micromouse OverviewApproach Potential problems Personal Expectations Team Goals.
Team P.A.C.K men EE 296 Project. Chris Mcleod Hardware specialist.
EE 296 TEAM “DA KINE” MICROMOUSE PROJECT PROPOSAL Team members: Software Group - Henry, James Roles : tracking, mapping, guidance, interface Hardware Group.
Final Presentation EE 296 – Micromouse Spring 2007 Friday, May 4, 2007 POST 214.
Curry Mouse EE296 Design Review Presentation Saturday, March 11, 2006.
Team 4 Shane Sunada – Project Leader Malcolm Menor – Project Manager Nathan Umeda – Technical Supervisor Joseph Longhi – Documentation Final Presentation.
‘Iole o Mãnoa Mouse of Mãnoa. Team Members Jeff Fines Designer, Fabricator, Programmer & Thomas Matsushima Designer, Fabricator, Programmer.
Final Presentation Micromouse Spring 08 8” Comb.
Preliminary Design Review (PDR) Team Amaze Me. EE 296 Project (MicroMouse) Members –Brandon Gibu –Ah Ram Kim –John-Kalani Miyajima –Justin Ogata Website.
Team: CHEE WHOOO Spring 08. The Team Mitchell La Puente-Project Leader Josh Miyamoto-Software Richard Ordonez-Hardware.
MICROMOUSE EE296 Spring 2004 Team Name: Lost Café 66.
Micromouse 296 Team: Rabbitwagon Fall O8. The Team Richard Ordonez- Project Leader Bob Barfield- Software Manager Lance Lavarias- Mechanical Architect.
Proposal Presentation
Presentation transcript:

Micromouse 296 By Lemmings

Introductions  Vicky- coordinator, software oriented  Bryce-morale booster, software oriented  Ruffer-time keeper, hardware oriented  Sean-rule enforcer, hardware oriented

Overview  Make a robotic mouse as a group  Be able to find the center of a maze as fast as possible  Do so without crashing into a wall

Initial Goals  Map the maze using intersection markers –Use reverse directions to return to start –Coordinates prevent looping –Mark dead ends to prevent re-entry  Do a left wall hugger  Time permitting add other maze solving algorithms  Make the mouse move and turn  Find the center of the maze

Overall Design  Top Down Sensors  Using a Wall Hugger as the maze solver  Research previous micromouse projects in aid for design  Adjustable front sensor to fine tune centering in cells

Overall Design  13 sensors, 3 in each corner of the main board and one on the front  Large heat sink to prevent overheating that also has aesthetic purposes  Hid sensor circuit under a layer with the motor circuit

Accomplishments Thus Far…  Built the complete structure of our mouse  Built website  Programmed to hug the left wall  Learned to work more efficiently as a team  Center can be identified if found  Learned how to solder properly

Fixed Problems  Original chassis was too big –Built a new chassis  Couldn’t find 100 Ohm resistors for detector circuit –Used two 48 Ohm resistors in series  Difficulty tracking –One wheel moves twice as fast as the other –When too far off track back the other way –Limit the amount of tracking –Removed tracking directly after turning

Fixed Problems  Burnt out a MOSFET –Replaced the MOSFET and used a heat sink  Multiple sensor problems –Solder touching the chassis –Disconnected wires  Main board was crooked –Drilled larger holes for adjustability

Fixed Problems  Head portion had to be adjusted after changing designs –Support bars were re-cut to allow the head to move farther back  Inverter pins were incorrect –Looked up the correct pin placement and re-soldered

Fixed Problems  Not enough experience with tools –Learned how to use them  Sheet metal was thick and hard to mold –Made most of our chassis out of L-brackets  Main board was too low and touched the wheels –Cut holes into main board for wheels

Outstanding Problems  Make a seeking program that finds the center  Make a mapping program  Some wires are too long  Some components are loose  Mouse gets stuck on sliders  Sensors too sensitive

Suggestions  Increase the spacing between sensors horizontally  Decrease the spacing between sensors vertically  Use PC board with copper rings to make soldering easier  Some of the programming cables are less than reliable  Better equipment/tools would be helpful

We learned...  The lower the resistance, the higher the sensitivity of the sensors  Time management  How to work efficiently as a team  The proper way to solder  How to program the rabbit with stepper motors

We also learned...  Better ways to debug circuits  Better ways to program with C  How to use AutoCAD  MOSFETS and other components are heat sensitive  How to build a working heat sink  How to build a webpage

Website