Fall 06, Sep 14 ELEC5270-001/6270-001 Lecture 5 1 ELEC 5270-001/6270-001 (Fall 2006) Low-Power Design of Electronic Circuits (Formerly ELEC 5970-003/6970-003)

Slides:



Advertisements
Similar presentations
Digital Integrated Circuits© Prentice Hall 1995 Low Power Design Low Power Design in CMOS.
Advertisements

10/4-6/05ELEC / Lecture 111 ELEC / (Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.
9/15/05ELEC / Lecture 71 ELEC / (Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.
Low Power Design of CMOS Circuits Vishwani D. Agrawal James J. Danaher Professor ECE Dept., Auburn University, Auburn, AL Nov 19, 20091Agrawal: Low.
Leakage and Dynamic Glitch Power Minimization Using MIP for V th Assignment and Path Balancing Yuanlin Lu and Vishwani D. Agrawal Auburn University ECE.
Yuanlin Lu Intel Corporation, Folsom, CA Vishwani D. Agrawal
Fall 06, Sep 19, 21 ELEC / Lecture 6 1 ELEC / (Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic.
Copyright Agrawal & Srivaths, 2007 Low-Power Design and Test, Lecture 2 1 Low-Power Design and Test Dynamic and Static Power in CMOS Vishwani D. Agrawal.
CMOS Circuit Design for Minimum Dynamic Power and Highest Speed Tezaswi Raja, Dept. of ECE, Rutgers University Vishwani D. Agrawal, Dept. of ECE, Auburn.
Introduction to CMOS VLSI Design Lecture 18: Design for Low Power David Harris Harvey Mudd College Spring 2004.
8/29/06 and 8/31/06 ELEC / Lecture 3 1 ELEC / (Fall 2006) Low-Power Design of Electronic Circuits (ELEC 5970/6970) Low Voltage.
Design of Variable Input Delay Gates for Low Dynamic Power Circuits
Copyright Agrawal, 2007 ELEC5270/6270 Spring 09, Lecture 4 1 ELEC / Spring 2009 Low-Power Design of Electronic Circuits Power Dissipation.
9/23-30/04ELEC / ELEC / (Fall 2004) Advanced Topics in Electrical Engineering Designing VLSI for Low-Power and Self-Test.
10/25/05ELEC / Lecture 151 ELEC / (Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.
May 14, ISVLSI 09 Algorithms for Estimating Number of Glitches and Dynamic Power in CMOS Circuits with Delay Variations Jins Davis Alexander Vishwani.
August 12, 2005Uppalapati et al.: VDAT'051 Glitch-Free Design of Low Power ASICs Using Customized Resistive Feedthrough Cells 9th VLSI Design & Test Symposium.
Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 7 1 ELEC 5270/6270 Fall 2007 Low-Power Design of Electronic Circuits Gate-Level Power Optimization Vishwani.
Fall 2006, Oct. 31, Nov. 2 ELEC / Lecture 10 1 ELEC / (Fall 2006) Low-Power Design of Electronic Circuits Power Analysis:
9/01/05ELEC / Lecture 41 ELEC / (Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.
9/08/05ELEC / Lecture 51 ELEC / (Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.
8/22/06 and 8/24/06 ELEC / Lecture 2 1 ELEC / (Fall 2006) Low-Power Design of Electronic Circuits (ELEC 5270/6270) Power.
Minimum Dynamic Power Design Using Variable Input Delay CMOS Logic
8/19/04ELEC / ELEC / Advanced Topics in Electrical Engineering Designing VLSI for Low-Power and Self-Test Fall 2004 Vishwani.
Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 12 1 ELEC 5270/6270 Fall 2007 Low-Power Design of Electronic Circuits Pass Transistor Logic: A Low Power.
Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 5 1 ELEC 5270/6270 Fall 2007 Low-Power Design of Electronic Circuits Low Voltage Low-Power Devices Vishwani.
Input-Specific Dynamic Power Optimization for VLSI Circuits Fei Hu Intel Corp. Folsom, CA 95630, USA Vishwani D. Agrawal Department of ECE Auburn University,
1 Dynamic Power Estimation With Process Variation Modeled as Min–Max Delay Jins Davis Alexander Vishwani D. Agrawal Department of Electrical and Computer.
Nov. 8, 001Low-Power Design Digital Circuit Design for Minimum Transient Energy Vishwani D. Agrawal Circuits and Systems Research Lab, Agere Systems (Bell.
8/30/05ELEC / Lecture 31 ELEC / (Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.
11/5/2004EE 42 fall 2004 lecture 281 Lecture #28 PMOS LAST TIME: NMOS Electrical Model – NMOS physical structure: W and L and d ox, TODAY: PMOS –Physical.
9/20/05ELEC / Lecture 81 ELEC / (Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.
9/13/05ELEC / Lecture 61 ELEC / (Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.
March 16, 2009SSST'091 Computing Bounds on Dynamic Power Using Fast Zero-Delay Logic Simulation Jins Davis Alexander Vishwani D. Agrawal Department of.
8/18/05ELEC / Lecture 11 ELEC / (Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.
Vishwani D. Agrawal James J. Danaher Professor
10/11/05ELEC / Lecture 121 ELEC / (Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.
9/29/05ELEC / Lecture 101 ELEC / (Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.
Fall 2006, Oct. 5 ELEC / Lecture 8 1 ELEC / (Fall 2006) Low-Power Design of Electronic Circuits Glitch-Free ASICs and Custom.
11/3/2004EE 42 fall 2004 lecture 271 Lecture #27 MOS LAST TIME: NMOS Electrical Model – Describing the I-V Characteristics – Evaluating the effective resistance.
Fall 2006, Oct. 17 ELEC / Lecture 9 1 ELEC / (Fall 2006) Low-Power Design of Electronic Circuits Power Analysis: Logic Level.
Jan. 2007VLSI Design '071 Statistical Leakage and Timing Optimization for Submicron Process Variation Yuanlin Lu and Vishwani D. Agrawal ECE Dept. Auburn.
Fall 2006, Sep. 26, Oct. 3 ELEC / Lecture 7 1 ELEC / (Fall 2006) Low-Power Design of Electronic Circuits Dynamic Power:
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Lecture 13: Power Dissipation Prof. Sherief Reda Division of Engineering, Brown.
8/23-25/05ELEC / Lecture 21 ELEC / (Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.
Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 13 1 ELEC 5270/6270 Fall 2007 Low-Power Design of Electronic Circuits Pseudo-nMOS, Dynamic CMOS and Domino.
10/20/05ELEC / Lecture 141 ELEC / (Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.
Lecture 5 – Power Prof. Luke Theogarajan
Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 6 1 ELEC 5270/6270 Fall 2007 Low-Power Design of Electronic Circuits Dynamic Power: Device Sizing Vishwani.
Lecture 7: Power.
Copyright Agrawal & Srivaths, 2007 Low-Power Design and Test, Lecture 5 1 Low-Power Design and Test Gate-Level Power Optimization Vishwani D. Agrawal Auburn.
9/27/05ELEC / Lecture 91 ELEC / (Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.
Jan 7, 2010Agrawal: Low Power CMOS Design1 Vishwani D. Agrawal James J. Danaher Professor ECE Dept., Auburn University, Auburn, AL
MOS Inverter: Static Characteristics
Modern VLSI Design 3e: Chapter 2 Copyright  1998, 2002 Prentice Hall PTR Topics n Derivation of transistor characteristics.
EE466: VLSI Design Power Dissipation. Outline Motivation to estimate power dissipation Sources of power dissipation Dynamic power dissipation Static power.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 19: October 16, 2013 Energy and Power.
Jia Yao and Vishwani D. Agrawal Department of Electrical and Computer Engineering Auburn University Auburn, AL 36830, USA Dual-Threshold Design of Sub-Threshold.
Chapter 07 Electronic Analysis of CMOS Logic Gates
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 17: October 19, 2011 Energy and Power.
Spring 2010, Mar 10ELEC 7770: Advanced VLSI Design (Agrawal)1 ELEC 7770 Advanced VLSI Design Spring 2010 Gate Sizing Vishwani D. Agrawal James J. Danaher.
Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 6.1 EE4800 CMOS Digital IC Design & Analysis Lecture 6 Power Zhuo Feng.
11/15/05ELEC / Lecture 191 ELEC / (Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.
ELEC Digital Logic Circuits Fall 2015 Delay and Power Vishwani D. Agrawal James J. Danaher Professor Department of Electrical and Computer Engineering.
ELEC Digital Logic Circuits Fall 2014 Delay and Power Vishwani D. Agrawal James J. Danaher Professor Department of Electrical and Computer Engineering.
Copyright Agrawal 2007ELEC / Spr 2015 Lecture 2 Jan ELEC / Spring 2015 Low-Power Design of Electronic Circuits Power.
ELEC 5270/6270 Spring 2013 Low-Power Design of Electronic Circuits Pseudo-nMOS, Dynamic CMOS and Domino CMOS Logic Vishwani D. Agrawal James J. Danaher.
CSV881: Low-Power Design Gate-Level Power Optimization
Leakage Power Reduction Techniques
ELEC 5270/6270 Spring 2009 Low-Power Design of Electronic Circuits Pseudo-nMOS, Dynamic CMOS and Domino CMOS Logic Vishwani D. Agrawal James J. Danaher.
Presentation transcript:

Fall 06, Sep 14 ELEC / Lecture 5 1 ELEC / (Fall 2006) Low-Power Design of Electronic Circuits (Formerly ELEC / ) Dual-Threshold Low-Power Devices Vishwani D. Agrawal James J. Danaher Professor Department of Electrical and Computer Engineering Auburn University, Auburn, AL

Fall 06, Sep 14ELEC / Lecture 52 Subthreshold Conduction V gs – V th -V ds I ds =I 0 exp( ───── ) × (1– exp ── ) nV T V T Sunthreshold slope V V gs I ds 1mA 100μA 10μA 1μA 100nA 10nA 1nA 100pA 10pA V th Subthreshold region Saturation region

Fall 06, Sep 14ELEC / Lecture 53 Thermal Voltage, v T V T = kT/q = 26 mV, at room temperature. When V ds is several times greater than V T V gs – V th I ds =I 0 exp( ───── ) nV T

Fall 06, Sep 14ELEC / Lecture 54 Leakage Current Leakage current equals I ds when V gs = 0 Leakage current equals I ds when V gs = 0 Leakage current, I ds = I 0 exp(-V th /nV T ) Leakage current, I ds = I 0 exp(-V th /nV T ) At cutoff, V gs = V th, and I ds = I 0 At cutoff, V gs = V th, and I ds = I 0 Lowering leakage to 10 -b I 0 Lowering leakage to 10 -b I 0 V th = bnV T ln 10 = 1.5b × 26 ln 10 = 90b mV Example: To lower leakage to I 0 /1,000 Example: To lower leakage to I 0 /1,000 V th = 270 mV

Fall 06, Sep 14ELEC / Lecture 55 Threshold Voltage V th = V t0 + γ[(Φ s +V sb ) ½ - Φ s ½ ] V th = V t0 + γ[(Φ s +V sb ) ½ - Φ s ½ ] V t0 is threshold voltage when source is at body potential (0.4 V for 180nm process) V t0 is threshold voltage when source is at body potential (0.4 V for 180nm process) Φ s = 2V T ln(N A /n i ) is surface potential Φ s = 2V T ln(N A /n i ) is surface potential γ = (2qε si N A ) ½ t ox /ε ox is body effect coefficient (0.4 to 1.0) γ = (2qε si N A ) ½ t ox /ε ox is body effect coefficient (0.4 to 1.0) N A is doping level = 8×10 17 cm -3 N A is doping level = 8×10 17 cm -3 n i = 1.45×10 10 cm -3 n i = 1.45×10 10 cm -3

Fall 06, Sep 14ELEC / Lecture 56 Threshold Voltage, V sb =1.1V Thermal voltage, V T = kT/q = 26 mV Thermal voltage, V T = kT/q = 26 mV Φ s = 0.93 V Φ s = 0.93 V ε ox = 3.9×8.85× F/cm ε ox = 3.9×8.85× F/cm ε si = 11.7×8.85× F/cm ε si = 11.7×8.85× F/cm t ox = 40 A o t ox = 40 A o γ = 0.6 V ½ γ = 0.6 V ½ V th = V t0 + γ[(Φ s +V sb ) ½ - Φ s ½ ] = 0.68 V V th = V t0 + γ[(Φ s +V sb ) ½ - Φ s ½ ] = 0.68 V

Fall 06, Sep 14ELEC / Lecture 57 A Sample Calculation V DD = 1.2V, 100nm CMOS process V DD = 1.2V, 100nm CMOS process Transistor width, W = 0.5μm Transistor width, W = 0.5μm OFF device (V gs = V th ) leakage OFF device (V gs = V th ) leakage I 0 = 20nA/μm, for low threshold transistor I 0 = 20nA/μm, for low threshold transistor I 0 = 3nA/μm, for high threshold transistor I 0 = 3nA/μm, for high threshold transistor 100M transistor chip 100M transistor chip Power = (100×10 6 /2)(0.5×20×10 -9 A)(1.2V) = 600mW for all low-threshold transistors Power = (100×10 6 /2)(0.5×20×10 -9 A)(1.2V) = 600mW for all low-threshold transistors Power = (100×10 6 /2)(0.5×3×10 -9 A)(1.2V) = 90mW for all high-threshold transistors Power = (100×10 6 /2)(0.5×3×10 -9 A)(1.2V) = 90mW for all high-threshold transistors

Fall 06, Sep 14ELEC / Lecture 58 Dual-Threshold Chip Low-threshold only for 20% transistors on critical path. Low-threshold only for 20% transistors on critical path. Leakage power = 600× ×0.8 Leakage power = 600× ×0.8 = = 192 mW

Fall 06, Sep 14ELEC / Lecture 59 Dual-Threshold CMOS Circuit

Fall 06, Sep 14ELEC / Lecture 510 Dual-Threshold Design To maintain performance, all gates on the critical path are assigned low V th. To maintain performance, all gates on the critical path are assigned low V th. Most of the other gates are assigned high V th. But, Most of the other gates are assigned high V th. But, Some gates on non-critical paths may also be assigned low V th to prevent those paths from becoming critical. Some gates on non-critical paths may also be assigned low V th to prevent those paths from becoming critical.

Fall 06, Sep 14ELEC / Lecture 511 Integer Linear Programming (ILP) to Minimize Leakage Power Use dual-threshold CMOS process Use dual-threshold CMOS process First, assign all gates low V th First, assign all gates low V th Use an ILP model to find the delay (T c ) of the critical path Use an ILP model to find the delay (T c ) of the critical path Use another ILP model to find the optimal V th assignment as well as the reduced leakage power for all gates without increasing T c Use another ILP model to find the optimal V th assignment as well as the reduced leakage power for all gates without increasing T c Further reduction of leakage power possible by letting T c increase Further reduction of leakage power possible by letting T c increase

Fall 06, Sep 14ELEC / Lecture 512 ILP -Variables For each gate i define two variables. T i : the longest time at which the output of gate i can produce an event after the occurrence of an input event at a primary input of the circuit. T i : the longest time at which the output of gate i can produce an event after the occurrence of an input event at a primary input of the circuit. X i : a variable specifying low or high V th for gate i ; X i is an integer [0, 1], X i : a variable specifying low or high V th for gate i ; X i is an integer [0, 1], 1  gate i is assigned low V th, 1  gate i is assigned low V th, 0  gate i is assigned high V th.

Fall 06, Sep 14ELEC / Lecture 513 ILP - objective function minimize the sum of all gate leakage currents, given by I Li is the leakage current of gate i with low V th I Li is the leakage current of gate i with low V th I Hi is the leakage current of gate i with high V th I Hi is the leakage current of gate i with high V th Using SPICE simulation results, construct a leakage current look up table, which is indexed by the gate type and the input vector. Using SPICE simulation results, construct a leakage current look up table, which is indexed by the gate type and the input vector. Leakage power:

Fall 06, Sep 14ELEC / Lecture 514 ILP - Constraints For each gate For each gate (1) (1) output of gate j is fanin of gate i (2) (2) Max delay constraints for primary outputs (PO) Max delay constraints for primary outputs (PO) (3) T max is the maximum delay of the critical path Gate j Gate i TjTj TiTi

Fall 06, Sep 14ELEC / Lecture 515 ILP Constraint Example Assume all primary input (PI) signals on the left arrive at the same time. Assume all primary input (PI) signals on the left arrive at the same time. For gate 2, constraints are For gate 2, constraints are

Fall 06, Sep 14ELEC / Lecture 516 ILP – Constraints (cont.) D Hi is the delay of gate i with high V th D Hi is the delay of gate i with high V th D Li is the delay of gate i with low V th D Li is the delay of gate i with low V th A second look-up table is constructed and specifies the delay for given gate type and fanout number. A second look-up table is constructed and specifies the delay for given gate type and fanout number.

Fall 06, Sep 14ELEC / Lecture 517 ILP – Finding Critical Delay T max can be specified or be the delay of longest path (T c ). T max can be specified or be the delay of longest path (T c ). To find T c, we change constraints (2) to an equation, assigning all gates low V th To find T c, we change constraints (2) to an equation, assigning all gates low V th Maximum T i in the ILP solution is T c. Maximum T i in the ILP solution is T c. If we replace T max with T c, the objective function minimizes leakage power without sacrificing performance. If we replace T max with T c, the objective function minimizes leakage power without sacrificing performance.

Fall 06, Sep 14ELEC / Lecture 518 Power-Delay Tradeoff If we gradually increase T max from T c, leakage power is further reduced, because more gates can be assigned high V th. If we gradually increase T max from T c, leakage power is further reduced, because more gates can be assigned high V th. But, the reduction trends to become slower. But, the reduction trends to become slower. When T max = (130%) T c, the reduction about levels off because almost all gates are assigned high V th. When T max = (130%) T c, the reduction about levels off because almost all gates are assigned high V th. Maximum leakage reduction can be 98%. Maximum leakage reduction can be 98%.

Fall 06, Sep 14ELEC / Lecture 519 Power-Delay Tradeoff

Fall 06, Sep 14ELEC / Lecture 520 Leakage Reduction Circuit Number of gates T c (ns)Unoptimized I leak (μA) Optimized (T max =T c ) LeakageReduction%Sun OS 5.7 CPU s Optimized I leak (μA) (T max =1.25T c ) Leakage Reduction %Sun OS 5.7 CPU s C C C C C C C C C C

Fall 06, Sep 14ELEC / Lecture 521 Dynamic & Leakage Power Comparison V T (thermal voltage, kT/q) and V th (threshold voltage) both depend on the temperature; leakage current also strongly depends on temperature. V T (thermal voltage, kT/q) and V th (threshold voltage) both depend on the temperature; leakage current also strongly depends on temperature. Spice simulation shows that for a 2-input NAND gate Spice simulation shows that for a 2-input NAND gate - with low V th, I 90 º C = 10 × I 27 º C - with high V th, I 90 º C = 20 × I 27 º C To manifest the projected contribution of leakage to the total power, we compare dynamic and leakage 90 º C. To manifest the projected contribution of leakage to the total power, we compare dynamic and leakage 90 º C.

Fall 06, Sep 14ELEC / Lecture 522 Dynamic & Leakage Power Comparison (cont.) Without considering glitches, the dynamic power is estimated by an event driven simulator, and is given by Without considering glitches, the dynamic power is estimated by an event driven simulator, and is given by We apply 1000 random test vectors at PIs with a vector period of 120% T c, and calculate the total number of weighted (by node capacitance) transitions in the circuit. We apply 1000 random test vectors at PIs with a vector period of 120% T c, and calculate the total number of weighted (by node capacitance) transitions in the circuit.

Fall 06, Sep 14ELEC / Lecture 523 Dynamic & Leakage o C Circuit P dyn (μW) P leak1 (μW) P leak1 / P dyn % P leak2 (μW) P leak2 / P dyn % C C C C C C C C C C

Fall 06, Sep 14ELEC / Lecture 524 Dynamic & Leakage o C Power in μW

Fall 06, Sep 14ELEC / Lecture 525 Summary Leakage power is a significant fraction of the total power in nanometer CMOS devices. Leakage power is a significant fraction of the total power in nanometer CMOS devices. Leakage power increases with temperature; can be as much as dynamic power. Leakage power increases with temperature; can be as much as dynamic power. Dual threshold design can reduce leakage. Dual threshold design can reduce leakage. Reference: Y. Lu and V. D. Agrawal, “ Leakage and Dynamic Glitch Power Minimization Using Integer Linear Programming for V th Assignment and Path Balancing, ” Proc. PATMOS, 2005, pp , access paper at Reference: Y. Lu and V. D. Agrawal, “ Leakage and Dynamic Glitch Power Minimization Using Integer Linear Programming for V th Assignment and Path Balancing, ” Proc. PATMOS, 2005, pp , access paper at