2/8/06D&T Seminar1 Multi-Core Parallelism for Low- Power Design Vishwani D. Agrawal James J. Danaher Professor Department of Electrical and Computer Engineering.

Slides:



Advertisements
Similar presentations
Computer Abstractions and Technology
Advertisements

9/15/05ELEC / Lecture 71 ELEC / (Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.
Low Power Design of CMOS Circuits Vishwani D. Agrawal James J. Danaher Professor ECE Dept., Auburn University, Auburn, AL Nov 19, 20091Agrawal: Low.
Praveen Venkataramani Suraj Sindia Vishwani D. Agrawal FINDING BEST VOLTAGE AND FREQUENCY TO SHORTEN POWER CONSTRAINED TEST TIME 4/29/ ST IEEE VLSI.
August 9, 2006Agrawal: VDAT'06 Tutorial II1 Low-Power Electronics and Systems Vishwani D. Agrawal James J. Danaher Professor Department of Electrical and.
Fall 06, Sep 19, 21 ELEC / Lecture 6 1 ELEC / (Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic.
Copyright Agrawal & Srivaths, 2007 Low-Power Design and Test, Lecture 2 1 Low-Power Design and Test Dynamic and Static Power in CMOS Vishwani D. Agrawal.
Dynamic Scan Clock Control In BIST Circuits Priyadharshini Shanmugasundaram Vishwani D. Agrawal
10/27/05ELEC / Lecture 161 ELEC / (Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.
VLSI Trends. A Brief History  1958: First integrated circuit  Flip-flop using two transistors  From Texas Instruments  2011  Intel 10 Core Xeon Westmere-EX.
10/25/05ELEC / Lecture 151 ELEC / (Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.
11/01/05ELEC / Lecture 171 ELEC / (Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.
11/17/05ELEC / Lecture 201 ELEC / (Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.
Spring 07, Feb 20 ELEC 7770: Advanced VLSI Design (Agrawal) 1 ELEC 7770 Advanced VLSI Design Spring 2007 Reducing Power through Multicore Parallelism Vishwani.
9/08/05ELEC / Lecture 51 ELEC / (Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.
Spring 08, Jan 15 ELEC 7770: Advanced VLSI Design (Agrawal) 1 ELEC 7770 Advanced VLSI Design Spring 2007 Introduction Vishwani D. Agrawal James J. Danaher.
Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 10 1 ELEC 5270/6270 Fall 2007 Low-Power Design of Electronic Circuits Memory and Multicore Design Vishwani.
8/17/06 ELEC / Lecture 1 1 ELEC / (Fall 2006) Low-Power Design of Electronic Circuits (ELEC 5270/6270) Introduction Vishwani.
8/19/04ELEC / ELEC / Advanced Topics in Electrical Engineering Designing VLSI for Low-Power and Self-Test Fall 2004 Vishwani.
Spring 07, Jan 16 ELEC 7770: Advanced VLSI Design (Agrawal) 1 ELEC 7770 Advanced VLSI Design Spring 2007 Introduction Vishwani D. Agrawal James J. Danaher.
Priyadharshini Shanmugasundaram Vishwani D. Agrawal DYNAMIC SCAN CLOCK CONTROL FOR TEST TIME REDUCTION MAINTAINING.
9/13/05ELEC / Lecture 61 ELEC / (Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.
Fall 2006, Nov. 30 ELEC / Lecture 12 1 ELEC / (Fall 2006) Low-Power Design of Electronic Circuits Test Power Vishwani D.
Spring 07, Feb 27 ELEC 7770: Advanced VLSI Design (Agrawal) 1 ELEC 7770 Advanced VLSI Design Spring 2007 Power Consumption in a Memory Vishwani D. Agrawal.
Design and Implementation of VLSI Systems (EN0160)
8/18/05ELEC / Lecture 11 ELEC / (Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.
Fall 2006, Nov. 28 ELEC / Lecture 11 1 ELEC / (Fall 2006) Low-Power Design of Electronic Circuits Power Analysis: High-Level.
S. Reda EN160 SP’08 Design and Implementation of VLSI Systems (EN1600) Lecture 18: Scaling Theory Prof. Sherief Reda Division of Engineering, Brown University.
10/13/05ELEC / Lecture 131 ELEC / (Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.
Vishwani D. Agrawal James J. Danaher Professor
Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 14 1 ELEC 5270/6270 Fall 2007 Low-Power Design of Electronic Circuits Power Aware Microprocessors Vishwani.
Copyright Agrawal & Srivaths, 2007 Low-Power Design and Test, Lecture 6 1 Low-Power Design and Test Memory and Multicore Design Vishwani D. Agrawal Auburn.
8/23-25/05ELEC / Lecture 21 ELEC / (Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.
Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 13 1 ELEC 5270/6270 Fall 2007 Low-Power Design of Electronic Circuits Pseudo-nMOS, Dynamic CMOS and Domino.
Spring 07, Feb 22 ELEC 7770: Advanced VLSI Design (Agrawal) 1 ELEC 7770 Advanced VLSI Design Spring 2007 Power Aware Microprocessors Vishwani D. Agrawal.
Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 6 1 ELEC 5270/6270 Fall 2007 Low-Power Design of Electronic Circuits Dynamic Power: Device Sizing Vishwani.
Fall 2006: Dec. 5 ELEC / Lecture 13 1 ELEC / (Fall 2006) Low-Power Design of Electronic Circuits Adiabatic Logic Vishwani.
Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 11 1 ELEC 5270/6270 Fall 2007 Low-Power Design of Electronic Circuits Adiabatic Logic Vishwani D. Agrawal.
Spring 07, Feb 15 ELEC 7770: Advanced VLSI Design (Agrawal) 1 ELEC 7770 Advanced VLSI Design Spring 2007 Power Dissipation in VLSI Chips Vishwani D. Agrawal.
Low Power Design of Integrated Systems Assoc. Prof. Dimitrios Soudris
Jan 7, 2010Agrawal: Low Power CMOS Design1 Vishwani D. Agrawal James J. Danaher Professor ECE Dept., Auburn University, Auburn, AL
Free Powerpoint Templates Page 1 Free Powerpoint Templates Low Power VLSI Design Dr Elwin Chandra Monie RMK Engineering College.
1 VLSI and Computer Architecture Trends ECE 25 Fall 2012.
Managing Performance and Efficiency of a Processor Advisor: Dr. Vishwani Agrawal Committee: Dr. Adit Singh and Dr. Victor Nelson Department of Electrical.
1 EE 587 SoC Design & Test Partha Pande School of EECS Washington State University
Low Power Architecture and Implementation of Multicore Design Khushboo Sheth, Kyungseok Kim Fan Wang, Siddharth Dantu ELEC6270 Low Power Design of Electronic.
Copyright Agrawal, 2007ELEC5270/6270 Spring 11, Lecture 141 ELEC 5270/6270 Spring 2011 Low-Power Design of Electronic Circuits Power Aware Microprocessors.
Copyright Agrawal, 2007ELEC6270 Spring 15, Lecture 91 ELEC 5270/6270 Spring 2015 Low-Power Design of Electronic Circuits Memory and Multicore Design Vishwani.
Spring 2010, Mar 10ELEC 7770: Advanced VLSI Design (Agrawal)1 ELEC 7770 Advanced VLSI Design Spring 2010 Gate Sizing Vishwani D. Agrawal James J. Danaher.
© Digital Integrated Circuits 2nd Inverter Digital Integrated Circuits A Design Perspective The Inverter Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic.
Copyright Agrawal, 2007ELEC6270 Spring 09, Lecture 71 ELEC 5270/6270 Spring 2009 Low-Power Design of Electronic Circuits Power Analysis: High-Level Vishwani.
Class Report 何昭毅 : Voltage Scaling. Source of CMOS Power Consumption  Dynamic power consumption  Short circuit power consumption  Leakage power consumption.
Copyright Agrawal, 2007ELEC6270 Spring 13, Lecture 101 ELEC 5270/6270 Spring 2013 Low-Power Design of Electronic Circuits Adiabatic Logic Vishwani D. Agrawal.
11/15/05ELEC / Lecture 191 ELEC / (Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.
Power Problems in VLSI Circuit Testing Keynote Talk Vishwani D. Agrawal James J. Danaher Professor Electrical and Computer Engineering Auburn University,
ELEC Digital Logic Circuits Fall 2015 Delay and Power Vishwani D. Agrawal James J. Danaher Professor Department of Electrical and Computer Engineering.
CS203 – Advanced Computer Architecture
LOW POWER DESIGN METHODS
M V Ganeswara Rao Associate Professor Dept. of ECE Shri Vishnu Engineering College for Women Bhimavaram Hardware Architecture of Low-Power ALU using Clock.
CS203 – Advanced Computer Architecture
LOW POWER DESIGN METHODS V.ANANDI ASST.PROF,E&C MSRIT,BANGALORE.
Lynn Choi School of Electrical Engineering
Vishwani D. Agrawal James J. Danaher Professor
Vishwani D. Agrawal James J. Danaher Professor
Parallel Processing Sharing the load.
Transistors on lead microprocessors double every 2 years Moore’s Law in Microprocessors Transistors on lead microprocessors double every 2 years.
CSV881: Low-Power Design Multicore Design for Low Power
Vishwani D. Agrawal James J. Danaher Professor
Vishwani D. Agrawal James J. Danaher Professor
Vishwani D. Agrawal James J. Danaher Professor
Presentation transcript:

2/8/06D&T Seminar1 Multi-Core Parallelism for Low- Power Design Vishwani D. Agrawal James J. Danaher Professor Department of Electrical and Computer Engineering Auburn University

2/8/06D&T Seminar2 Power Consumption of VLSI Chips Why is it a concern?

2/8/06D&T Seminar3 SIA Roadmap for Processors (1999) Year Feature size (nm) Logic transistors/cm 2 6.2M18M39M84M180M390M Clock (GHz) Chip size (mm 2 ) Power supply (V) High-perf. Power (W) Source:

2/8/06D&T Seminar4 ISSCC, Feb. 2001, Keynote “Ten years from now, microprocessors will run at 10GHz to 30GHz and be capable of processing 1 trillion operations per second -- about the same number of calculations that the world's fastest supercomputer can perform now. “Unfortunately, if nothing changes these chips will produce as much heat, for their proportional size, as a nuclear reactor....” Patrick P. Gelsinger Senior Vice President General Manager Digital Enterprise Group INTEL CORP.

2/8/06D&T Seminar5 VLSI Chip Power Density Pentium® P Year Power Density (W/cm 2 ) Hot Plate Nuclear Reactor Rocket Nozzle Sun’s Surface Source: Intel 

2/8/06D&T Seminar6 Power Dissipation in CMOS Logic (0.25µ) %75%5%20 P total (0→1) = C L V DD 2 + t sc V DD I peak + V DD I leakage CLCL V DD

2/8/06D&T Seminar7 Low-Power Datapath Architecture Lower supply voltage –This slows down circuit speed –Use parallel computing to gain the speed back Works well when threshold voltage is also lowered. About 60% reduction in power obtainable. Reference: A. P. Chandrakasan and R. W. Brodersen, Low Power Digital CMOS Design, Boston: Kluwer Academic Publishers (Now Springer), 1995.

2/8/06D&T Seminar8 A Reference Datapath Combinational logic Output Input Register CK Supply voltage= V ref Total capacitance switched per cycle= C ref Clock frequency= f Power consumption:P ref = C ref V ref 2 f C ref

2/8/06D&T Seminar9 A Parallel Architecture Comb. Logic Copy 1 Comb. Logic Copy 2 Comb. Logic Copy N Register N to 1 multiplexer Multiphase Clock gen. and mux control Input Output CK f f/N A copy processes every Nth input, operates at reduced voltage Supply voltage: V N ≤ V 1 = V ref N = Deg. of parallelism

2/8/06D&T Seminar10 Control Signals, N = 4 CK Phase 1 Phase 2 Phase 3 Phase 4

2/8/06D&T Seminar11 Power P N =P proc + P overhead P proc =N(C inreg + C comb )V N 2 f/N + C outreg V N 2 f =(C inreg + C comb +C outreg )V N 2 f =C ref V N 2 f P overhead =C overhead V N 2 f≈ δC ref (N – 1)V N 2 f P N = [1 + δ(N – 1)]C ref V N 2 f P N V N 2 ──= [1 + δ(N – 1)] ─── P 1 V ref 2

2/8/06D&T Seminar12 Voltage vs. Speed C L V ref C L V ref Delay of a gate, T ≈ ──── = ────────── Ik(W/L)(V ref – V t ) 2 whereI is saturation current k is a technology parameter W/L is width to length ratio of transistor V t is threshold voltage Supply voltage Normalized gate delay, T VtVt V ref =5VV 2 =2.9V N=1 N=2 V3V3 N=3 1.2μ CMOS Voltage reduction slows down as we get closer to V t

2/8/06D&T Seminar13 Increasing Multiprocessing P N /P V t =0V (extreme case) V t =0.4V V t =0.8V N 1.2μ CMOS, V ref = 5V

2/8/06D&T Seminar14 Extreme Cases: V t = 0 Delay, T α 1/ V ref For N processing elements, delay = NT → V N = V ref /N P N 1 ──=[1+ δ (N – 1)] ──→1/N P 1 N 2 For negligible overhead, δ→0 P N 1 ──≈── P 1 N 2 For V t > 0, power reduction is less and there will be an optimum value of N.

2/8/06D&T Seminar15 Example: Multiplier Core Specification: 200MHz Clock 15W 5V Low voltage operation, V DD ≥ 1.5 volts (V DD – 0.5) 2 Relative clock rate = ─────── Problem: Integrate multiplier core on a SOC Power budget for multiplier ~ 5W

2/8/06D&T Seminar16 A Multicore Design Multiplier Core 1 Multiplier Core 5 Reg 5 to 1 mux Multiphase Clock gen. and mux control Input Output 200MHz CK 200MHz 40MHz Multiplier Core 2 Core clock frequency = 200/N, N should divide 200.

2/8/06D&T Seminar17 How Many Cores? For N cores: clock frequency = 200/N MHz Supply voltage, V DDN = (20.25/N) 1/2 Volts Assuming 10% overhead per core, V DDN Power dissipation =15 [ (N – 1)] ( ─── ) 2 watts 5

2/8/06D&T Seminar18 Design Tradeoffs Number of cores N Clock (MHz) Core supply VDDN (Volts) Total Power (Watts)

2/8/06D&T Seminar19 Power Reduction in Processors Just about everything is used. Hardware methods: Voltage reduction for dynamic power Dual-threshold devices for leakage reduction Clock gating, frequency reduction Sleep mode Architecture: Instruction set hardware organization Software methods

2/8/06D&T Seminar20 Parallel Architecture Processor f f/2 Processor f/2 f Input Output Input Output Capacitance = C Voltage = V Frequency = f Power = CV 2 f Capacitance = 2.2C Voltage = 0.6V Frequency = 0.5f Power = 0.396CV 2 f

2/8/06D&T Seminar21 Pipeline Architecture Processor f Input Output Register ½ Proc. f InputOutput Register ½ Proc. Register Capacitance = C Voltage = V Frequency = f Power = CV 2 f Capacitance = 1.2C Voltage = 0.6V Frequency = f Power = 0.432CV 2 f

2/8/06D&T Seminar22 Approximate Trend n-parallel proc. n-stage pipeline proc. CapacitancenCC VoltageV/n Frequencyf/nf PowerCV 2 f/n 2 Chip area n times10-20% increase G. K. Yeap, Practical Low Power Digital VLSI Design, Boston: Kluwer Academic Publishers, 1998.

2/8/06D&T Seminar23 Multicore Processors Performance based on SPECint2000 and SPECfp2000 benchmarks Multicore Single core Computer, May 2005, p. 12

2/8/06D&T Seminar24 Multicore Processors D. Geer, “Chip Makers Turn to Multicore Processors,” Computer, vol. 38, no. 5, pp , May A. Jerraya, H. Tenhunen and W. Wolf, “Multiprocessor Systems-on-Chips,” Computer, vol. 5, no. 7, pp , July 2005; this special issue contains three more articles on multicore processors. S. K. Moore, “Winner Multimedia Monster – Cell’s Nine Processors Make It a Supercomputer on a Chip,” IEEE Spectrum, vol. 43. no. 1, pp , January 2006.

2/8/06D&T Seminar25 Cell - Cell Broadband Engine Architecture L to R Atsushi Kameyama, Toshiba James Kahle, IBM Masakazu Suzoki, Sony © IEEE Spectrum, January 2006 Nine-processor chip: 192 Gflops

2/8/06D&T Seminar26 Cell’s Nine-Processor Chip © IEEE Spectrum, January 2006 Eight Identical Processors f = 5.6GHz (max) 44.8 Gflops

2/8/06D&T Seminar27 ?

2/8/06D&T Seminar28 Amdahl’s Law S P = 1 – S 01time 1 Speedup =───────── S + (1 – S)/ N Where N =number of parallel processors Example:S = 0.6, N = 10, Speedup = 1.56 S = 0.6, N = ∞, Speedup = 1.67 Gene Amdahl, “Validity of the Single Processor Approach to Achieving Large-Scale Computing Capabilities,” AFIPS Conference Proceedings, (30), pp , 1967.

2/8/06D&T Seminar29 Question Can we find a multi-processing law –for power reduction, or –for performance per watt