Presentation is loading. Please wait.

Presentation is loading. Please wait.

10/27/05ELEC 5970-001/6970-001 Lecture 161 ELEC 5970-001/6970-001(Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.

Similar presentations


Presentation on theme: "10/27/05ELEC 5970-001/6970-001 Lecture 161 ELEC 5970-001/6970-001(Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits."— Presentation transcript:

1 10/27/05ELEC 5970-001/6970-001 Lecture 161 ELEC 5970-001/6970-001(Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits Adiabatic and Charge Recovery Logic Vishwani D. Agrawal James J. Danaher Professor Department of Electrical and Computer Engineering Auburn University http://www.eng.auburn.edu/~vagrawal vagrawal@eng.auburn.edu

2 10/27/05ELEC 5970-001/6970-001 Lecture 162 Examples of Power Saving and Energy Recovery Power saving by power transmission at high voltage: –1000W transmitted at 100V, current I = 10A –If resistance of transmission circuit is 1Ω, then power loss = I 2 R = 100W –Transmit at 1000V, current I = 1A, transmission loss = 1W Energy recovery from automobile brakes: –Normal brake converts mechanical energy into heat –Instead, the energy can be stored in a flywheel, or –Converted to electricity to charge a battery

3 10/27/05ELEC 5970-001/6970-001 Lecture 163 Reexamine CMOS Gate i = Ve -t/RpC /R p i 2 R p V V 2 /R p C Time, t Power Most energy dissipated here V 2 e -2t/RpC /R p 0 Energy = Area = CV 2 /2 v(t) V 3R p C

4 10/27/05ELEC 5970-001/6970-001 Lecture 164 Charging with Constant Current i = K i 2 R p V(t) C Power 0 v(t) = Kt/C Time to charge capacitor to voltage V v(T) = V = KT/C, or T = CV/K Current, i = K = CV/T Output voltage, v(t) 0 V Time, t t=CV/K Kt/C Power = i 2 R p = C 2 V 2 R p /T 2 Energy = Power × T = (R p C/T) CV 2 C 2 V 2 R p /T 2

5 10/27/05ELEC 5970-001/6970-001 Lecture 165 Or, Charge in Steps i = Ve -t/RpC /2R p i 2 R p 0→V/2→V V 2 /4R p C Time, t Power V 2 e -2t/RpC /4R p 0 Energy = Area = CV 2 /8 v(t) V V/2 Total energy = CV 2 /8 + CV 2 /8 = CV 2 /4 3R p C6R p C

6 10/27/05ELEC 5970-001/6970-001 Lecture 166 Energy Dissipation of a Step T E = ∫V 2 e -2t/RpC /(N 2 R p ) dt 0 = [CV 2 /(2N 2 )] (1 – e -2T/RpC ) ≈ CV 2 /(2N 2 )for large T ≥ 3R p C Voltage step = V/N

7 10/27/05ELEC 5970-001/6970-001 Lecture 167 Charge in N Steps Supply voltage 0 → V/N → 2V/N → 3V/N →... NV/N Current, i(t) = Ve -t/RpC /NR p Power, i 2 (t)R p = V 2 e -2t/RpC /N 2 R p Energy = N CV 2 /2N 2 = CV 2 /2N→ 0 for N → ∞ Delay = N × 3R p C → ∞ for N → ∞

8 10/27/05ELEC 5970-001/6970-001 Lecture 168 References C. L. Seitz, A. H. Frey, S. Mattisson, S. D. Rabin, D. A. Speck and J. L. A. van de Snepscheut, “Hot-Clock nMOS,” Proc. Chapel Hill Conf. VLSI, 1985, pp. 1-17. W. C. Athas, L. J. Swensson, J. D. Koller, N. Tzartzanis and E. Y.-C. Chou, “Low-Power Digital Systems Based on Adiabatic-Switching Principles,” IEEE Trans. VLSI Systems, vol. 2, no. 4, pp. 398-407, Dec. 1994.

9 10/27/05ELEC 5970-001/6970-001 Lecture 169 Dynamic CMOS Inverter V C v(t) CK vin CK vin v(t) P E P E P E

10 10/27/05ELEC 5970-001/6970-001 Lecture 1610 Adiabatic Dynamic CMOS Inverter C v(t) CK vin A. G. Dickinson and J. S. Denker, “Adiabatic Dynamic Logic,” IEEE J. Solid-State Circuits, vol. 30, pp. 311-315, March 1995. CK vin v(t) V0V0 V-Vf 0 Vf +

11 10/27/05ELEC 5970-001/6970-001 Lecture 1611 Cascaded Adiabatic Inverters CK1CK2CK1’CK2’ vin CK1 CK2 CK1’ CK2’ precharge input evaluate hold

12 10/27/05ELEC 5970-001/6970-001 Lecture 1612 Complex ADL Gate CK B A. G. Dickinson and J. S. Denker, “Adiabatic Dynamic Logic,” IEEE J. Solid-State Circuits, vol. 30, pp. 311-315, March 1995. A C AB + C Vf < Vth

13 10/27/05ELEC 5970-001/6970-001 Lecture 1613 Quasi-Adiabatic Logic Two sets of diodes: One controls the charging path (D1) while the other (D2) controls the discharging path Supply lines have EVALUATE phase (  swings up) and HOLD phase (  swings low) D1 D2

14 10/27/05ELEC 5970-001/6970-001 Lecture 1614 Possible Cases: The circuit output node X is LOW and the pMOS tree is turned ON: X follows  as it swings to HIGH (EVALUATE phase) The circuit node X is LOW and the nMOS tree is ON. X remains LOW and no transition occurs (HOLD phase) The circuit node X is HIGH and the pMOS tree is ON. X remains HIGH and no transition occurs (HOLD phase) The circuit node X is HIGH and the nMOS tree is ON. X follows  down to LOW, i.e. energy is recovered (RESTORE phase) Quasi-Adiabatic Logic Design

15 10/27/05ELEC 5970-001/6970-001 Lecture 1615 A Case Study K. Parameswaran, “Low Power Design of a 32-bit Quasi-Adiabatic ARM Based Microprocessor,” Master’s Thesis, Dept. of ECE, Rutgers University, New Brunswick, NJ, 2004.

16 10/27/05ELEC 5970-001/6970-001 Lecture 1616 Quasi-Adiabatic 32-bit ARM Based Microprocessor Design Specifications Operating voltage: 2.5 V Operating temperature: 25 o C Operating frequency: 10 MHz to 100 MHz Leakage current: 0.5 fAmps Load capacitance: 6X10 -18 F (15% activity) Transistor Count

17 10/27/05ELEC 5970-001/6970-001 Lecture 1617 Technology Distribution Microprocessor has a mix of static CMOS and Quasi-adiabatic components ALU Adder-subtractor unit Barrel shifter unit Booth-multiplier unitALU Adder-subtractor unit Barrel shifter unit Booth-multiplier unit Control Units ARM controller unit Bus control unit Pipeline Units ID unit IF unit WB unit MEM unit Control Units ARM controller unit Bus control unit Pipeline Units ID unit IF unit WB unit MEM unit Quasi-AdiabaticStatic CMOS

18 10/27/05ELEC 5970-001/6970-001 Lecture 1618 Power Analysis Datapath Component Power Consumption (mW) Frequency 25 MHz Power Consumption (mW) Frequency 100 MHz Quasi- adiabatic * Static CMOS Power Saved Quasi- adiabatic * Static CMOS Power Saved 32-bit Adder Subtracter 1.011.5544%1.291.6220% 32-bit Barrel Shifter 0.91.68146%1.3681.824% 32-bit Booth Multiplier 3.45.840%5.156.217% Power Consumption (mW) Frequency 25 MHz Quasi- adiabatic * Static CMOS Power Saved 60 mW85 mW40%

19 10/27/05ELEC 5970-001/6970-001 Lecture 1619 Power Analysis (Cont’d.)

20 10/27/05ELEC 5970-001/6970-001 Lecture 1620 Area Analysis Datapath Component Area (mm 2 ) Quasi- adiabatic * Static CMOSArea Increase 32-bit Adder Subtracter0.050.0366% 32-bit Barrel Shifter0.250.11120% 32-bit Booth Multiplier1.20.5140% Chip Area (mm 2 ) Quasi- adiabatic * Static CMOS Area Increase 1.011.5544%

21 10/27/05ELEC 5970-001/6970-001 Lecture 1621 Summary In principle, two types of adiabatic logic designs have been proposed: –Fully-adiabatic Adiabatic charging Charge recovery: charge from a discharging capacitor is used to charge the capacitance from the next stage. W. C. Athas, L. J. Swensson, J. D. Koller, N. Tzartzanis and E. Y.-C. Chou, “Low-Power Digital Systems Based on Adiabatic-Switching Principles,” IEEE Trans. VLSI Systems, vol. 2, no. 4, pp. 398-407, Dec. 1994. –Quasi-adiabatic Adiabatic charging and discharging Y. Ye and K. Roy, “QSERL: Quasi-Static Energy Recovery Logic,” IEEE J. Solid-State Circuits, vol. 36, pp. 239-248, Feb. 2001.


Download ppt "10/27/05ELEC 5970-001/6970-001 Lecture 161 ELEC 5970-001/6970-001(Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits."

Similar presentations


Ads by Google