Design and Implementation of VLSI Systems (EN1600) Lecture 23: Sequential Circuit Design (2/2) Prof. Sherief Reda Division of Engineering, Brown University.

Slides:



Advertisements
Similar presentations
CS 140 Lecture 11 Sequential Networks: Timing and Retiming Professor CK Cheng CSE Dept. UC San Diego 1.
Advertisements

1 COMP541 Flip-Flop Timing Montek Singh Oct 6, 2014.
Introduction to CMOS VLSI Design Sequential Circuits.
VLSI Design EE 447/547 Sequential circuits 1 EE 447/547 VLSI Design Lecture 9: Sequential Circuits.
Introduction to CMOS VLSI Design Sequential Circuits
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Lecture 24: Sequential Circuit Design (2/3) Prof. Sherief Reda Division of Engineering,
MICROELETTRONICA Sequential circuits Lection 7.
Latches CS370 –Spring 2003 Section 4-2 Mano & Kime.
Lecture 11: Sequential Circuit Design. CMOS VLSI DesignCMOS VLSI Design 4th Ed. 11: Sequential Circuits2 Outline  Sequencing  Sequencing Element Design.
Introduction to CMOS VLSI Design Lecture 10: Sequential Circuits David Harris Harvey Mudd College Spring 2004.
Lecture 11: Sequential Circuit Design. CMOS VLSI DesignCMOS VLSI Design 4th Ed. 11: Sequential Circuits2 Outline  Sequencing  Sequencing Element Design.
K-Maps, Timing Sequential Circuits: Latches & Flip-Flops Lecture 4 Digital Design and Computer Architecture Harris & Harris Morgan Kaufmann / Elsevier,
Sequential Circuits. Outline  Floorplanning  Sequencing  Sequencing Element Design  Max and Min-Delay  Clock Skew  Time Borrowing  Two-Phase Clocking.
Prof. John Nestor ECE Department Lafayette College Easton, Pennsylvania ECE VLSI Circuit Design Lecture 17 - Sequential.
Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis EE4800 CMOS Digital IC Design & Analysis Lecture 11 Sequential Circuit Design Zhuo Feng.
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN1600) Lecture 21: Dynamic Combinational Circuit Design Prof. Sherief Reda Division of.
S. Reda EN160 SP’08 Design and Implementation of VLSI Systems (EN01600) Lecture 19: Combinational Circuit Design (1/3) Prof. Sherief Reda Division of Engineering,
Assume array size is 256 (mult: 4ns, add: 2ns)
ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN Dr. Shi Dept. of Electrical and Computer Engineering.
Design and Implementation of VLSI Systems (EN1600) Lecture 27: Datapath Subsystems 3/4 Prof. Sherief Reda Division of Engineering, Brown University Spring.
S. Reda EN1600 SP’08 Design and Implementation of VLSI Systems (EN1600S08) Lecture12: Logical Effort (1/2) Prof. Sherief Reda Division of Engineering,
ENGIN112 L28: Timing Analysis November 7, 2003 ENGIN 112 Intro to Electrical and Computer Engineering Lecture 28 Timing Analysis.
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Lecture 27: Datapath Subsystems 1/3 Prof. Sherief Reda Division of Engineering,
S. Reda EN160 SP’08 Design and Implementation of VLSI Systems (EN1600) Lecture 14: Power Dissipation Prof. Sherief Reda Division of Engineering, Brown.
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Lecture 28: Datapath Subsystems 2/3 Prof. Sherief Reda Division of Engineering,
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Lecture 29: Datapath Subsystems 3/3 Prof. Sherief Reda Division of Engineering,
EE141 © Digital Integrated Circuits 2nd Timing Issues 1 Latch-based Design.
CSE 140L Lecture 4 Flip-Flops, Shifters and Counters Professor CK Cheng CSE Dept. UC San Diego.
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Lecture 11: Logical Effort (1/2) Prof. Sherief Reda Division of Engineering, Brown.
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Lecture 15: Interconnects & Wire Engineering Prof. Sherief Reda Division of Engineering,
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Prof. Sherief Reda Division of Engineering, Brown University Spring 2007 [sources:
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Lecture 14: Interconnects Prof. Sherief Reda Division of Engineering, Brown University.
Design and Implementation of VLSI Systems (EN0160)
Timing in Sequential circuits – Stabilization time of a latch Assume that: t hl,1 = t lh,1 = t hl,2 = t lh,2 = 1 time unit 1 2.
S. Reda EN160 SP’08 Design and Implementation of VLSI Systems (EN1600) Lecture 18: Scaling Theory Prof. Sherief Reda Division of Engineering, Brown University.
S. Reda EN160 SP’08 Design and Implementation of VLSI Systems (EN1600) Lecture 22: Sequential Circuit Design (1/2) Prof. Sherief Reda Division of Engineering,
S. Reda EN160 SP’08 Design and Implementation of VLSI Systems (EN1600) Lecture 20: Combinational Circuit Design (2/3) Prof. Sherief Reda Division of Engineering,
S. Reda EN1600 SP’08 Design and Implementation of VLSI Systems (EN1600) Lecture 25: Datapath Subsystems 1/4 Prof. Sherief Reda Division of Engineering,
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Lecture 31: Array Subsystems (SRAM) Prof. Sherief Reda Division of Engineering,
Design and Implementation of VLSI Systems (EN1600) Lecture 26: Datapath Subsystems 2/4 Prof. Sherief Reda Division of Engineering, Brown University Spring.
Design and Implementation of VLSI Systems (EN0160) Prof. Sherief Reda Division of Engineering, Brown University Spring 2007 [sources: Weste/Addison Wesley.
S. Reda EN160 SP’08 Design and Implementation of VLSI Systems (EN1600) lecture06 Prof. Sherief Reda Division of Engineering, Brown University Spring 2008.
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Lecture 25: Sequential Circuit Design (3/3) Prof. Sherief Reda Division of Engineering,
Design and Implementation of VLSI Systems (EN0160) lecture03 Sherief Reda Division of Engineering, Brown University Spring 2008 [sources: Weste/Addison.
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Lecture10: Delay Estimation Prof. Sherief Reda Division of Engineering, Brown University.
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Lecture 21: Differential Circuits and Sense Amplifiers Prof. Sherief Reda Division.
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Lecture 13: Power Dissipation Prof. Sherief Reda Division of Engineering, Brown.
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Lecture 33: Array Subsystems (PLAs/FPGAs) Prof. Sherief Reda Division of Engineering,
S. Reda VLSI Design Design and Implementation of VLSI Systems (EN1600) lecture09 Prof. Sherief Reda Division of Engineering, Brown University Spring 2008.
S. Reda EN160 SP’08 Design and Implementation of VLSI Systems (EN1600) Lecture 13: Logical Effort (2/2) Prof. Sherief Reda Division of Engineering, Brown.
Design and Implementation of VLSI Systems (EN0160)
Introduction to CMOS VLSI Design Lecture 10: Sequential Circuits
Introduction to CMOS VLSI Design Lecture 10: Sequential Circuits Credits: David Harris Harvey Mudd College (Material taken/adapted from Harris’ lecture.
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Lecture 23: Sequential Circuit Design (1/3) Prof. Sherief Reda Division of Engineering,
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Lecture 26: Project Overview Prof. Sherief Reda Division of Engineering, Brown University.
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Lecture 17: Static Combinational Circuit Design (1/2) Prof. Sherief Reda Division.
CS 151 Digital Systems Design Lecture 28 Timing Analysis.
S. Reda EN1600 SP’08 Design and Implementation of VLSI Systems (EN0160) Lecture 28: Datapath Subsystems 4/4 Prof. Sherief Reda Division of Engineering,
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Lecture 18: Static Combinational Circuit Design (2/2) Prof. Sherief Reda Division.
Design and Implementation of VLSI Systems (EN1600) lecture05 Sherief Reda Division of Engineering, Brown University Spring 2008 [sources: Weste/Addison.
Lecture 5. Sequential Logic 3 Prof. Taeweon Suh Computer Science Education Korea University 2010 R&E Computer System Education & Research.
Sp09 CMPEN 411 L18 S.1 CMPEN 411 VLSI Digital Circuits Spring 2009 Lecture 16: Static Sequential Circuits [Adapted from Rabaey’s Digital Integrated Circuits,
Z. Feng MTU EE EE4800 Fall 2011 CMOS Digital IC Design & Analysis Lecture 14 Final Exam Review Zhuo Feng.
Sequential Networks: Timing and Retiming
Prof. Joongho Choi CMOS SEQUENTIAL CIRCUIT DESIGN Integrated Circuits Spring 2001 Dept. of ECE University of Seoul.
June clock data Q-flop Flop dataQ clock Flip-flop is edge triggered. It transfers input data to Q on clock rising edge. Memory Elements.
1 COMP541 Sequential Logic Timing Montek Singh Sep 30, 2015.
Lecture 4. Sequential Logic #3 Prof. Taeweon Suh Computer Science & Engineering Korea University COSE221, COMP211 Logic Design.
Lecture 11: Sequential Circuit Design
Introduction to CMOS VLSI Design Lecture 10: Sequential Circuits
Presentation transcript:

Design and Implementation of VLSI Systems (EN1600) Lecture 23: Sequential Circuit Design (2/2) Prof. Sherief Reda Division of Engineering, Brown University Spring 2008 [sources: Weste/Addison Wesley – Rabaey/Pearson]

Sequencing methods

S. Reda EN160 SP’07 Sequencing timing terminology t pd Logic Prop. Delay t pdq Latch D-Q Prop Delay t cd Logic Cont. Delay t pcq Latch D-Q Cont. Delay t pcq Latch/Flop Clk-Q Prop Delay t setup Latch/Flop Setup Time t ccq Latch/Flop Clk-Q Cont. Delay t hold Latch/Flop Hold Time

1. Max-Delay (setup) constraint: Flip-flops

2. Max-Delay (setup) constraint: 2-phase latches

2. Min-delay (hold) constraint: Flip-flip

S. Reda EN160 SP’07 2. Min-delay (hold) constraint: 2-phase latches

S. Reda EN160 SP’07 3. Time borrowing

S. Reda EN160 SP’07 How much time can be borrowed? T borrow <= T c /2 –(t setup + t nonoverlap )

S. Reda EN160 SP’07 4. Clock Skew We have assumed zero clock skew Clocks really have uncertainty in arrival time –Decreases maximum propagation delay –Increases minimum contamination delay –Decreases time borrowing

S. Reda EN160 SP’07 4. Skew: flip-flops

S. Reda EN160 SP’07 4. Skew: 2-phase latches