20 Feb 2002Readout electronics1 Status of the readout design Paul Dauncey Imperial College Outline: Basic concept Features of proposal VFE interface issues.

Slides:



Advertisements
Similar presentations
Controller Tests Stephen Kaye Controller Test Motivation Testing the controller before the next generation helps to shake out any remaining.
Advertisements

6 Mar 2002Readout electronics1 Back to the drawing board Paul Dauncey Imperial College Outline: Real system New VFE chip A simple system Some questions.
MICE Fiber Tracker Electronics AFEII for MICE (Front end readout board) Recall: AFEs mount on ether side of the VLPC cass, with fibers going to the VLPCs.
Update of EXT Stripline BPM Electronics with LCLS-style Digital BPM Processors Glen White, with slides by Steve Smith 15 December 2009 ATF2.
Adding electronic noise and pedestals to the CALICE simulation LCWS 19 – 23 rd April Catherine Fry (working with D Bowerman) Imperial College London.
A scalable DAQ system using the DRS4 sampling chip H.Friederich 1, G.Davatz 1, U.Hartmann 2, A.Howard 1, H.Meyer 1, D.Murer 1, S.Ritt 2, N.Schlumpf 2 1.
24 September 2002Paul Dauncey1 Trigger issues for the CALICE beam test Paul Dauncey Imperial College London, UK.
28 February 2003Paul Dauncey - HCAL Readout1 HCAL Readout and DAQ using the ECAL Readout Boards Paul Dauncey Imperial College London, UK.
1 VLPC system and Cosmic Ray test results M. Ellis Daresbury Tracker Meeting 30 th August 2005.
28 August 2002Paul Dauncey1 Readout electronics for the CALICE ECAL and tile HCAL Paul Dauncey Imperial College, University of London, UK For the CALICE-UK.
DAQ WS02 Feb 2006Jean-Sébastien GraulichSlide 1 Does IPM System Matches MICE needs ? Personal Understanding and Remarks o General Considerations o Front.
5 Feb 2002Electronics changes1 Possible changes to electronics Paul Dauncey Imperial College Some ideas on iterations to the design: Reduce number of uplinks?
DSP online algorithms for the ATLAS TileCal Read Out Drivers Cristobal Cuenca Almenar IFIC (University of Valencia-CSIC)
6 June 2002UK/HCAL common issues1 Paul Dauncey Imperial College Outline: UK commitments Trigger issues DAQ issues Readout electronics issues Many more.
ECFA Sep 2004Paul Dauncey - ECAL DAQ1 Thoughts on Si-W ECAL DAQ Paul Dauncey For the Imperial/UCL groups D. Bowerman, J. Butterworth, P. Dauncey,
4 Dec 2001First ideas for readout/DAQ1 Paul Dauncey Imperial College Contributions from all of UK: result of brainstorming meeting in Birmingham on 13.
LCWS Apr 2004Paul Dauncey - CALICE Readout1 CALICE ECAL Readout Status Paul Dauncey For the CALICE-UK electronics group: A. Baird, D. Bowerman,
29 January 2004Paul Dauncey - CALICE DAQ1 UK ECAL Hardware Status David Ward (for Paul Dauncey)
2 April 2003Paul Dauncey - CALICE DAQ1 First Ideas For CALICE Beam Test DAQ Paul Dauncey Imperial College London, UK for IC, Manchester, RAL, UCL.
Electronics for PS and LHC transformers Grzegorz Kasprowicz Supervisor: David Belohrad AB-BDI-PI Technical student report.
1 MICE Tracker Update M. Ellis UKNFIC Meeting 25 th August 2005.
L.Royer– Calice DESY – July 2010 Laurent ROYER, Samuel MANEN, Pascal GAY LPC Clermont-Ferrand R&D LPC Clermont-Fd dedicated to the.
DLS Digital Controller Tony Dobbing Head of Power Supplies Group.
MR (7/7/05) T2K electronics Beam structure ~ 8 (9?) bunches / spill bunch width ~ 60 nsec bunch separation ~ 600 nsec spill duration ~ 5  sec Time between.
Main Board Status MB2 v1 for FATALIC & QIE 10/06/2015Roméo BONNEFOY - LPC Clermont1 Roméo BONNEFOY François Vazeille LPC Clermont-Ferrand.
U N C L A S S I F I E D FVTX Detector Readout Concept S. Butsyk For LANL P-25 group.
AIDA FEE64 development report August 2010 Progress after Texas CAD work Manufacturing 25th August
Understanding Data Acquisition System for N- XYTER.
K.C.RAVINDRAN,GRAPES-3 EXPERIMENT,OOTY 1 Development of fast electronics for the GRAPES-3 experiment at Ooty K.C. RAVINDRAN On Behalf of GRAPES-3 Collaboration.
September 8-14, th Workshop on Electronics for LHC1 Channel Control ASIC for the CMS Hadron Calorimeter Front End Readout Module Ray Yarema, Alan.
11th March 2008AIDA FEE Report1 AIDA Front end electronics Report February 2008.
ECFA Sep 2004Paul Dauncey - CALICE Readout1 CALICE ECAL Readout Status Paul Dauncey For the CALICE-UK electronics group A. Baird, D. Bowerman, P.
HBD FEM Overall block diagram Individual building blocks Outlook ¼ detector build.
P. Baron CEA IRFU/SEDI/LDEFACTAR Meeting Santiago de Compostela March 11, A review of AFTER+ chip Its expected requirements At this time, AFTER+
FED RAL: Greg Iles5 March The 96 Channel FED Tester What needs to be tested ? Requirements for 96 channel tester ? Baseline design Functionality.
DAQ for 4-th DC S.Popescu. Introduction We have to define DAQ chapter of the DOD for the following detectors –Vertex detector –TPC –Calorimeter –Muon.
NUMI Off Axis NUMI Off Axis Workshop Workshop Argonne Meeting Electronics for RPCs Gary Drake, Charlie Nelson Apr. 25, 2003 p. 1.
Acquisition Crate Design BI Technical Board 26 August 2011 Beam Loss Monitoring Section William Vigano’ 26 August
Joel Goldstein, RAL 4th ECFA/DESY LC Workshop, 1/4/ Vertex Readout Joel Goldstein PPd, RAL 4 th ECFA/DESY LC Workshop DAQ Session 1 st April 2003.
March 9, 2005 HBD CDR Review 1 HBD Electronics Preamp/cable driver on the detector. –Specification –Schematics –Test result Rest of the electronics chain.
1 07/10/07 Forward Vertex Detector Technical Design – Electronics DAQ Readout electronics split into two parts – Near the detector (ROC) – Compresses and.
Digital CFEB (an Update) B. Bylsma, EMU at CMS Week, March 16, Ben Bylsma The Ohio State University.
L.Royer– Calice LLR – Feb Laurent Royer, J. Bonnard, S. Manen, P. Gay LPC Clermont-Ferrand R&D pole MicRhAu dedicated to High.
Sensor testing and validation plans for Phase-1 and Ultimate IPHC_HFT 06/15/ LG1.
SPIROC update Felix Sefkow Most slides from Ludovic Raux HCAL main meeting April 18, 2007.
Update on the project - selected topics - Valeria Bartsch, Martin Postranecky, Matthew Warren, Matthew Wing University College London CALICE a calorimeter.
LCWS Apr 2004Paul Dauncey - CALICE Readout1 CALICE ECAL Readout Status Paul Dauncey For CALICE-UK electronics group: A. Baird, D. Bowerman, P. Dauncey,
LC Power Distribution & Pulsing Workshop, May 2011 Super-ALTRO Demonstrator Test Results LC Power Distribution & Pulsing Workshop, May nd November.
11 October 2002Paul Dauncey - CDR Introduction1 CDR Introduction and Overview Paul Dauncey Imperial College London.
TPC electronics Status, Plans, Needs Marcus Larwill April
LKr readout and trigger R. Fantechi 3/2/2010. The CARE structure.
Status of MAPMT FEE Electronics Boards Connector board – have 5 boards, 1 assembled Readout board (“MUX” board) – layout completed 12/2, but unfortunately.
1 Carleton/Montreal Electronics development J.-P Martin (Montreal) Shengli Liu & M. Dixit (Carleton) LC TPC Meeting DESY Hamburg, 4 June 2007.
5 May 2006Paul Dauncey1 The ILC, CALICE and the ECAL Paul Dauncey Imperial College London.
New digital readout of HFRAMDON neutron counters Proposal Version 2.
Rutherford Appleton Laboratory September 1999Fifth Workshop on Electronics for LHC Presented by S. Quinton.
1 Timing of the calorimeter monitoring signals 1.Introduction 2.LED trigger signal timing * propagation delay of the broadcast calibration command * calibration.
Readout controller Block Diagram S. Hansen - CD-1 Lehman Review1 VXO Ø Det Links to 24 SiPM Front End Boards Clock Event Data USB ARM uC A D Rd Wrt 100Mbit.
Design of the 64-channel ASIC: update DEI - Politecnico di Bari and INFN - Sezione di Bari Meeting INSIDE, December 18, 2014, Roma Outline  Proposed solution.
SVD FADC Status Markus Friedl (HEPHY Vienna) Wetzlar SVD-PXD Meeting, 5 February 2013.
DAQ ACQUISITION FOR THE dE/dX DETECTOR
96-channel, 10-bit, 20 MSPS ADC board with Gb Ethernet optical output
Power pulsing of AFTER in magnetic field
CDR Project Summary and Issues
Front-end electronic system for large area photomultipliers readout
VELO readout On detector electronics Off detector electronics to DAQ
UK ECAL Hardware Status
BESIII EMC electronics
Trigger issues for the CALICE beam test
The CMS Tracking Readout and Front End Driver Testing
Presentation transcript:

20 Feb 2002Readout electronics1 Status of the readout design Paul Dauncey Imperial College Outline: Basic concept Features of proposal VFE interface issues Power and grounding scheme More questions than answers!

20 Feb 2002Readout electronics2 Basic concept Want to run close to “TESLA mode”: Learn how to operator at collider Looks like innovative LC R&D; more chance of funding Operate according to “bunch trains”: Timing set by TESLA parameter; not necessarily related to beam timing Store digitised data near front end and read out after train; demonstrate untriggered running

20 Feb 2002Readout electronics3 Basic concept (2) TESLA train is 2820 bunches, 337 ns 5Hz 337 ns is ~ 3 MHz –Readout ADC’s will sample at this rate –Particle signal appears for one sample only –Maximum clock needed is 16 x 3 MHz = 48 MHz 2820 bunches is ~ 1ms –Readout allows up to 4096 bunches –Would a maximum of 2048 bunches (~ 0.7 ms) be a significant issue? Ignor 5 Hz repetition rate

20 Feb 2002Readout electronics4 Overview of readout Front end card (FEC) connects to VFE chip Link interface card (LIC) does electrical- optic conversion “on-detector” Back end card (BEC) interfaces to PC.

20 Feb 2002Readout electronics5 Front end card (FEC) One FEC handles 3 silicon wafers = 7 VFE chips = 108 channels (has 112 = 7x16 channels). Results in 90 FEC’s in total. VFE chips mounted on daughterboard(s); need to think about interface here (later) All power and ground routed through FEC.

20 Feb 2002Readout electronics6 Front end card (2) Features ADC’s sample VFE output at 12 MHz to allow for up to four gain ranges to be used Large memory stores raw data and small memory stores data after threshold cut; either or both can be read out. On-board DAC to generate calibration pulse All timing adjustments software configurable to a 48 MHz scale (21 ns).

20 Feb 2002Readout electronics7 Link interface card (LIC) One LIC handles 15 FEC’s (5 layers). Results in 6 LIC’s in total Clock and control on uplink sent to all 15 FEC’s; data from same FEC’s on downlink. Power and ground routed through LIC.

20 Feb 2002Readout electronics8 Back end card (BEC) Not so well defined: Functionally simple –To uplink: clock (from fast control) and StartTrain or PC commands to FEC’s –From downlink: data from FEC’s to memory and then to PC Implementation not so obvious –Several options being considered –Sketch out one; VME system where this functionality is split over two physical cards

20 Feb 2002Readout electronics9 BEC driver One BEC driver handles all 6 LIC’s. Clock and control distributed from here Interfaces to fast control and VME for PC control

20 Feb 2002Readout electronics10 BEC receiver One BEC receiver handles 30 FEC’s = 2 LIC’s. Results in 3 BEC receivers in total. Buffers readout data until read by VME Checks FEC’s are still synchronised after train

20 Feb 2002Readout electronics11 BEC options Other possibilities are: CompaqPCI crate rather than VME –Similar but maybe cheaper; can this be combined with HCAL readout? Implement on PCI cards –Plug into PC bus directly; no crate –Restricted by small size; need to rethink data handling as memories will not fit Interface BEC’s directly to network –TPC/IP interface; send data to disk as IP packets.

20 Feb 2002Readout electronics12 Data readout rates Noise above threshold ~ 0.1% (3  ) ~ 10 channels per sample ~ per train Showers ~ 1800 samples per shower ~ 7 kBytes Readout mainly limited by VME ~ 25 MBytes/s Shower readout at ~kHz should be possible. How much data do we expect? TBytes?

20 Feb 2002Readout electronics13 VFE daughterboard interface Important to be sure we agree at VFE-FEC. We assume the VFE daughterboard needs: Sample-and-hold clock and gain range clock Power and ground Calibration signals We assume it gives out: Differential analog signal per channel; what are the voltage levels?

20 Feb 2002Readout electronics14 VFE daughterboard interface (2) Clocks; send differential digital, suggest LVDS: 3 MHz sample-and-hold clock 12 MHz gain range clock; max of 4 gains Phase of these (and ADC’s) adjustable to 21 ns Power and ground: Power for VFE chips themselves; what voltages and power consumption? Bias voltage for silicon diodes; ditto? Separate analog and digital power and ground?

20 Feb 2002Readout electronics15 VFE daughterboard interface (3) Calibration: Will calibration pulses go to diodes, VFE inputs or both? Multiple capacitors? Selectable? Channel selection, digital TTL. What granularity; any possible combination of channels? 16-bit configurable DAC on FEC; sets constant analog level; same for all channels on FEC. Differential; what voltage range and polarity? Time of single pulse set by digital signal; LVDS. Configurable to a 48 MHz tick; fine enough?

20 Feb 2002Readout electronics16 VFE daughterboard interface (4) Pin count seems reasonable: Analog signals = 32 pins/VFE chip Calibration selection = 16 pins/VFE chip Calibration analog voltage = 2 pins Clocks and calibration time = 6 pins Power and ground = 8 pins (?) Implies 64-pin connector per VFE chip: All 7 VFE chips on one daughterboard? Each VFE chip on its own daughterboard?

20 Feb 2002Readout electronics17 Power and grounding This scheme routes all power out, and grounds back, in a “tree” configuration: Power supply (who buys this?) to all 6 LIC’s Each LIC to 15 FEC’s Each FEC to 7 VFE chips and 3 wafers Requires no grounding of diodes or VFE chips elsewhere to avoid ground loops: Must have no electrical contact to carbon fibre support structure; is this possible/desirable?

20 Feb 2002Readout electronics18 Summary We think we have a feasible system: –Need to firm it up over next few weeks to submit proposal –After that, major system changes will be very difficult (unless cheaper!) We need a lot of information (soon) to cost it properly: –How and when do we get the answers we need? –Are some of them known already?