Impact of Environmental Dimensions on Oil Industry

Slides:



Advertisements
Similar presentations
Man affects his Environment through the change of:
Advertisements

Bioremediation.
Chapter Contents 1. What Is Bioremediation? 2. Bioremediation Basics
Section #3: Water Pollution
CRUDE OIL Fossil Fuel(Today’s World Dependence) Nonrenewable Energy Source Extracted from deep wells, either on land or on the seafloor Chemical Composition:
University of Khartoum Institute of Environmental Sciences Dip/ M.Sc in Environmental Sciences Semester 2 ENVIRONMENTAL POLLUTION COURSE By: Dr. Zeinab.
BIOREMEDIATION By: Christina Dimitrijevic, Rachel Brown & Ola Johnston.
Chapter 21 Water Pollution
Problems due to overuse of energy Resources Unit III Part V
How Human Activities Can Affect Sustainability Section 7.3
Environmental Challenges in Petroleum Industry Dilip Biswas.
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings. MICHAEL D. JOHNSON HUMAN IMPACTS, BIODIVERSITY, AND ENVIRONMENTAL ISSUES CHAPTER.
WATER POLLUTION.
WATER POLLUTION.  Water covers more than 70 percent of the Earth’s surface. While less than 3 percent of this water is drinkable, all of it is necessary.
Laws to Prevent and Reduce Air Pollution Unit 4. Human Input of Pollutants into Troposphere Nitrogen and Sulfur compounds released by burning fossil fuels.
Freshwater Pollution.
Earth Science 4.3 Water, Air, Land Resources
 All organisms use resources to maintain their existence and the use of these resources has an impact on the environment  Currently, the Earth is experiencing.
General Types of Water Pollution
WHAT Causes WATER POLLUTION?
 The purpose of this presentation is to elaborate and increase readers awareness on the potential solid waste (hazardous, non hazardous and mixed waste)
ENVIRONMENTAL HAZARDS. What are environmental hazards?  Pollutants in our air, land, and water that can affect our health  EPA-Environmental Protection.
 Identifying the Relationship Between Agriculture and the Environment.
4.3 Water, Air, and Land Resources
Hazardous Waste/ Bioremediation
Air Pollution Dr. R. B. Schultz. Introduction Air pollution Types Air pollution Types Sources of pollutants Sources of pollutants Pollution and weather.
Environmental Impacts of Chemical Industries Dr. Lek Wantha.
Air Chapter 12.
WasteSection 3 Section 3: Hazardous Waste Preview Bellringer Objectives Types of Hazardous Waste Resource Conservation and Recovery Act The Superfund Act.
Environmental Studies Dr Anupam Agarwal. Composition of Soil: Soils are a mixture of different things; rocks, minerals, and dead, decaying plants and.
1 Human impact on the Environment Pollution I - Air pollution.
Chapter 12 Air.
Chapter 22 Water Pollution. Types of Water Pollution  Water pollution  Any physical or chemical change in water that adversely affects the health of.
WasteSection 3 Types of Hazardous Waste Hazardous wastes are wastes that are a risk to the health of humans or other living organisms. They may be solids,
Pollution.
General Types of Water Pollution Water Quality Notes.
Chapter 11 Section 3 Water Pollution Environmental Science Spring 2011.
1. HUNTER-GATHERER SOCIETIES HAD VERY LIMITED ENERGY REQUIREMENTS. THESE WERE MET USING WOOD (A RENEWABLE RESOURCE). 2. THE INDUSTRIAL REVOLUTION CHANGED.
Food safety Environmental Pollution. The natural environment encompasses all living and non-living things occurring naturally on Earth or some region.
WATER POLLUTION.
The ecosystem pollution. The pollution of ecosystem is divided into: 1- Air pollution 2- Aquatic pollution 3-Terrestrial pollution.
Air Pollution What controls the level? –Amount of pollutants entering the air. –Amount of space into which the pollutants are dispersed. –Mechanisms that.
Water Chapter 5 Part II.
Human impact on the Environment
Environmental Science: Toward a Sustainable Future Richard T. Wright
HUMAN IMPACT on the BIOSPHERE Chapter 6-4 Charting a course for the Future
ENVIRONMENTAL POLLUTION. Pollution Pollution is the introduction of contaminants into a natural environment that causes instability, disorder, harm or.
1. Why is water important? Water shapes Earth’s surface and affects Earth’s weather and climates. Water needed for life. Living things are made up of.
SOIL POLLUTION & IT’S REMEDIES
Pollution the presence of harmful substances (chemicals) in the environment these potentially harmful chemicals are called pollutants they change the make.
Human Water Use.
Environmental, Political, Social and Economic Impacts of Fossil Fuel Use.
Ocean Pollution. What is pollution? Pollution occurs when an environment is contaminated, or dirtied, by waste, chemicals, trash, and other harmful substances.
Environmental, Political, Social and Economic Impacts of Fossil Fuel Use.
CHAPTER 2 HUMAN ACTIONS Section 2 Using Resources Wisely Notes 2-2.
WATER – AIR—CLIMATE CHANGE
Review Water Pollution.
Clean Technology (PB382) Click to edit Master title style Numfon Eaktasang, Ph.D.
Science 3001 Science II: Earth & Life Sciences I
Air Pollution and Stratospheric Ozone Depletion
Dr. Tanveer Iqbal Associate Professor,
The Lithosphere.
SOIL CONTAMINATION.
Environmental Impact of the Industrial Revolution
Resources and Conservation
Water Pollution.
Environmental Law and Regulations
Topic 5: Monitoring the Environment
Water, Air, and Land Resources
Presentation transcript:

Impact of Environmental Dimensions on Oil Industry

TERI Technologies

Sources of Environmental Impact Exploration  Underwater explosions (250 db) disturbs communication and navigation of aquatic animals. Drilling  Muds – oil, heavy metals, chemicals (CI, BCD, O2X, detergents  Land and water pollution (3826 MTs oil discharged in offshore in Britain in 1996) Processing  Rigs & Pipelines  Noise, Light, Land & water pollution. Flaring of gas  Global warming – Climate Change. Refining  SOx, NOx, Cox, SPM to Air, Solid waste to Land and Liquid effluent to water pollution. Storage  Tank Bottom Sludge, Crude Oily Sludge, Emulsion Oily Sludge, Oily Sludge in Pit – Air, Water & Land pollution. Transportation  Oil Spill , Leakage of pipe line  Water & Land (Farmer’s agricultural land). Accidents  Oil Contaminated Site, Ship breaking at sea  water & land pollution. (223 oil spill in UK in 1996, Fire in Oil India Ltd, India, 2005) War Land, Sea water pollution  Gulf War 1991, Lebanon Bombing etc.

Sources of Environmental Impacts

Sources of Environmental Impacts

Sources of Environmental Impacts

Environmental Threats of Oil Contamination PAH: Poly-cyclic Aromatic Hydrocarbons

Environmental Threats of Oil Contamination PAH: Poly-cyclic Aromatic Hydrocarbons

Environmental Threats of Oil Contamination Effect on soil quality: Oil contaminated soil looses its fertility for more than 20 years. The texture and other physicochemical characteristics of the soil gets affected. The mites and other insects can’t survive in oil contaminated land leading to major imbalance in the food chain. Oil contamination has adverse effect on seed germination. Farmers loose its crops and are not able to grow agricultural crops for years after years. Effect on economy of the farmers. Effect on Fresh water Eco-system and ecological habitat: A large percentage of the oil spills gets spread over the surface of the stagnant aquatic system resulting anaerobic environment in the water below the surface. This leads to death of the natural flora and fauna where oxygen is the key element for their respiration. Physical and chemical alteration of natural habitats of the fresh water ecosystem. PAH: Poly-cyclic Aromatic Hydrocarbons

Environmental Threats of Oil Contamination Effect on Fresh water Eco-system and ecological habitat: Physical smothering effect and lethal or sub-lethal toxic effects on the aquatic life Aquatic birds suffer from Hypothermia, Drowning, Loss in flight, Poisoning etc. Crude oil exposure may cause damage to lungs, liver, kidneys, intestines and other internal organs of the aquatic birds and animals. Reproductive Impairment in birds, fish and reptiles Plants covered by the oil, unable to photosynthesize. Oil spill significantly reduce the density of invertebrates and taxonomic richness at least 5 km downstream. Some fish species has been found with altered tracheal gills impregnated with tar like substance. PAH: Poly-cyclic Aromatic Hydrocarbons

Environmental Threats of Oil Contamination Effect on Marine Eco-system and ecological habitat: Displacement of fish and other aquatic animals due to noise pollution by underwater explosion. A large percentage of the oil spill gets emulsified and solidified along with sea shore, clinging to sand, rock and stone. Physical and chemical alteration of natural habitats such as when oil is incorporated into sediments Physical smothering effect on the marine life Lethal or sub-lethal toxic effects on the marine life Aquatic birds suffer from Hypothermia, Drowning, Loss in flight, Poisoning etc. Crude oil exposure may cause damage to lungs, liver, kidneys, intestines and other internal organs of the aquatic birds and animals. Reproductive Impairment in birds, fish and reptiles Plants covered by the oil, unable to photosynthesize. Changes in the marine ecosystem resulting from oil effects on key organisms e.g. increased abundance of intertidal algae following the death of limpets, which normally eat the algae. PAH: Poly-cyclic Aromatic Hydrocarbons

Environmental Threats of Oil Contamination Effect on human health: Long term exposure to crude oil contamination leads to severe diseases to human and other animals. Polycyclic aromatic hydrocarbons (PAHs), one of the major components found in crude oil are highly health hazard like skin erythema (reddening), skin cancer, sinonasal cancer, gastrointestinal cancer, and bladder cancer. Inhalation of hydrocarbon vapours causes headache, nausea, dizziness, respiratory irritation. Benzene, Toluene, Ethylbenzene and Xylene (BTEX), the key components of crude oil causes mutations, cancers, birth defects, endocrine disruptions, nervous disorders, and liver disease, carcinogen, effect on CNS, depression, irregular heartbeats. PAH: Poly-cyclic Aromatic Hydrocarbons

Environmental Threats of Oil Contamination Effect on air quality: The ambient air quality gets affected because of high carbon monoxide (CO), sulfur dioxide (SO2), nitrogen oxides (NOx), SPM (fine and respirable suspended particulate matter), VOC (volatile organic compounds) etc. Air pollution has both acute and chronic effects on human health. Health effects range anywhere from minor irritation of eyes and the upper respiratory system to chronic respiratory disease, heart disease, lung cancer, and death. Air pollution has been shown to cause acute respiratory infections in children and chronic bronchitis in adults. It has also been shown to worsen the condition of people with pre-existing heart or lung disease. Among asthmatics, air pollution has been shown to aggravate the frequency and severity of attacks. Both short-term and long-term exposures have also been linked with premature mortality and reduced life expectancy. Air pollutants can also indirectly affect human health through acid rain, by polluting drinking water and entering the food chain, and through global warming and associated climate change and sea level rise. PAH: Poly-cyclic Aromatic Hydrocarbons

Environmental Threats of Oil Contamination Effect on climate change: Continuous gas flaring is a major source of green house gases which has great impact on climate change. This results in global warming, flooding, coastal erosion, rise in sea level, massive population migration and loss of infrastructure. There is chance of adverse impact on human health and loss of life due to heat waves, extreme weather events, contaminated water supply, air pollution and increased transmission of disease. PAH: Poly-cyclic Aromatic Hydrocarbons

Environmental Protection Measures Environment Management Practices (EMP) Environmental Impact Assessment (EIA) Environmental Management System (ISO 14000) Occupational Health Safety and Society (OHSAS 18000) Corporate Social Responsibility (CSR) Environmental protection measures are taken to minimize pollution in water, air, land and biological environment by improving the environmental performance. PAH: Poly-cyclic Aromatic Hydrocarbons

Environmental Protection Measures “Caring for the Climate” initiative: Oil and Natural Gas Corporation (ONGC), India and Tata Steel are among the companies that have recently joined a UN climate change initiative for business leaders, according to the UN Global Compact, which partners industry. Some 230 companies from around the world have signed up for this “Caring for the Climate” initiative since it was launched in 2007. The CEOs of these companies have to pledge their commitment to caring for the environment. As many as 150 of the world’s top 500 corporations are its members. There are also 74 country networks and India is “very strong”. It was formed in Mumbai in 2000. Shri R S Sharma, CMD of ONGC and also President of the Indian arm of United Nations Global Compact. PAH: Poly-cyclic Aromatic Hydrocarbons

Environmental Protection Measures PAH: Poly-cyclic Aromatic Hydrocarbons

Environmental Protection Measures PAH: Poly-cyclic Aromatic Hydrocarbons

Environmental Policy and Regulations International and national policies developed. The basic legislations, rules and regulations covering environmental dimensions of the petroleum sector. The petroleum (production) (seaward areas) regulation act 1988 provides that “ the licensees are obliged to operate in a proper and workmanlike manner in accordance with methods and practice customarily used in good oil field practice”. The Kyoto Protocol, an international and legally binding agreement to reduce greenhouse gases emissions worldwide, entered into force on 16th February, 2005. Each country has to create its own policy based on own circumstances. In India TERI is co-operating with the government regulatory authorities like Ministry of Environment and Forest (MOEF), Central Pollution Control Board (CPCB), State Pollution Control Board (SPCB), for developing various policies related to environment. PAH: Poly-cyclic Aromatic Hydrocarbons

Environmental Policy and Regulations Dr. R.K.Pachauri, Director-General, TERI, India & Chairman of the Intergovernmental Panel on Climate Change (IPCC), is also the advisor to Government of India for Climate Change Policy. Dr Pachauri accepts the Nobel Peace Prize 2007 on behalf of the Intergovernmental Panel on Climate Change at a presentation ceremony held in Oslo on 10 December 2007. PAH: Poly-cyclic Aromatic Hydrocarbons

Environmental Policy and Regulations Acts & Rules by Govt. of India applicable to Oil Industries: The Water (Prevention and Control of Pollution) Act, 1974 The Water (Prevention and Control of Pollution) Rules ,1975 The Water (Prevention and Control of Pollution) Cess Act 1977 & Cess (Amendment ) Act, 2003 The Water (Prevention and Control of Pollution) Cess Rules, 1978  The Air (Prevention and Control of Pollution) Act, 1981 amended 1987 The Air (Prevention and Control of Pollution) Rules ,1981 amended 1983 The Environment (Protection ) Act , 1986 The Environment (Protection ) Rules ,1986 amended 2005 Environment (Siting for industrial projects) Rules 1999 Declaring coastal stretches as coastal Regulation Zone (CRZ) 1991 The Hazardous Waste (Management & Handling) Rules,1989 amended 2003, further amended 2008. The Manufacture, storage and import of hazardous chemicals Rules 1989 amended 2000 PAH: Poly-cyclic Aromatic Hydrocarbons

Environmental Policy and Regulations Acts & Rules by Govt. of India applicable to Oil Industries: The Biomedical Waste Rules (Management and Handling) ,1998 amended 2003 The Noise pollution ( Regulation & Control ) Rules, 2000 amended 2002 The Chemical Accidents (Emergency planning, preparedness & response ) Rules, 1996 The Batteries ( Management & Handling ) Rules.2001 The Ozone Depleting substances (regulation & Control) Rules 2000 The Public Liability and Insurance Act , 1981 amended 1992 The Public Liability and Insurance Rules, 1981 amended 1993 The National Environment Appellate Authority Act, 1997 The National Environment Appellate Authority (Appeal) Rules, 1997 The National Environmental Tribunal Act. 1995 PAH: Poly-cyclic Aromatic Hydrocarbons

Bioremediation : An Ecofriendly Solution For Treatment Of Petroleum Waste

Conventional methods for remediation of Oil Contamination Land filling Incineration Air Spurging Natural Remediation (like evaporation of VOCs, auto oxidation, and photo oxidation, etc.) Surfactants Chemical dissociation, dumping in injection wells, etc. Land farming

What is Bioremediation ? Bioremediation : Naturally occurring microorganisms for remediation of harmful substances to nontoxic compounds. Used for clean up of oil spills, oily sludge, oil contaminated site, oil contaminated water , any other type of contamination like pesticide contamination etc. End product CO2, water & cell biomass More Economical & Environment-friendly compared to other conventional methods, like incineration etc.

Comparison with other methods Parameters Techniques for disposal Conventional methods Bioremediation technique Efficiency Containment of toxic wastes to some extent, complete removal is not possible. Complete removal of toxic waste is possible. Applicability Application is limited. In-situ application is not possible, subject to availability of land and machinery. In some cases the process is not easy to handle. Application is universal (can often treat water, soil, sludges etc). In-situ application is possible and land requirement is minimal. The process is easy to handle. Liability Present Eliminated Land requirement Separate land is required for the treatment. Treatment can be done in-situ, hence separate land requirement is not there. Environment friendliness Not environment friendly. Directly or indirectly generates secondary pollutant. Quite environment friendly method. The end product is CO2, water and dead biomass that helps to regain the fertility of the contaminated soil. Water Pollution There is always a chance of water pollution. No chance of water pollution. Air pollution There is always a chance of air pollution. No chance of air pollution. Cost High Minimal

Comparison with other methods Environmental impact Cost of remediation  (USD/ton contaminated soil) Incineration Air pollution 400-1200 Surfactants Water/ Land pollution 200-300 Bioremediation Environment friendly (negligible pollution) 20-200

Development of the consortium Oil Installations in India Barauni Mathura Mumbai Visakhapatnam Cochin Haldiochin Digboi Bongaigaon Guwahati Southern Region Western Region North Eastern Region Northern Region Duliajan Vadinar Pipeline Terminal Panipat

Development of the consortium Isolation of microbes capable of hydrocarbon degradation 15 different oil contaminated sites identified (in India) Different geo-climatic regions Different level of contamination and types of contamination Age and history of contamination 324 bacterial strains were screened (from 15 sites) Four bacterial strains were finally selected

Composition of Total petroleum hydrocarbon (TPH) Crude Oil Alkane Fraction Aromatic Fraction NSO Fraction Asphaltene Fraction Straight Chain Compound Branched Chain Compound Cyclic Compound Monocyclic Aromatics Polycylic Aromatic

The Microbial Consortium A microbial consortium was developed, comprising of 4 different strains of microbes which can eat up oil contamination in soil. Can work in different climatic conditions i.e. 150C – 600C temp, upto 6% salinity etc. Not pathogenic and not harmful to the environment. Can degrade the oil contamination very quickly (normally 4 – 6 months time) Easy to handle.

Mechanism of Action

Microbial Products of TERI KT Oilivorus-A Oilzapper KT- Oilzapper Oilivorous-A Oilivorous-S

TERI’s experience on Bioremediation Name of the company where bioremediation job has been carried out Quantity (MTs) of oil contamination BG Exploration & Production India Limited, India 1185.00 Bharat Petroleum Corporation Limited, India 1000.00 Cairn Energy Pty. Ltd., India 510.00 Chennai Petroleum Corporation Limited, India 4000.00 Chandrapur Super Thermal Power Station, India 20.00 Hindustan Petroleum Corpn Limited, India 1500.00 Indian Oil Corporation Limited, India 45150.00 Indian Petrochemicals Corporation Limited, India 150.00 Mangalore Refinery and Petrochemicals Limited, India 2000.00 Oil and Natural Gas Corporation Limited, India 72173.00 Oil India Limited, India 8625.00 Reliance Petroleum Limited, India 300.00 Tata Power Company Limited, India 10.00 KOC, Kuwait 700.00 ADNOC, Abu Dhabi 200.00 Total quantity undertaken for bioremediation job 137523.00

TERI’s experience on Bioremediation Type of oil contamination Quantity (MTs) of oil contamination Synthetic oil based mud (SOBM) 1185.00 Drill cuttings 710.00 Emulsion sludge 1150.00 Thermal power station sludge 30.00 Acidic sludge 13700.00 oil contaminated soil (land) 23301.00 oil contaminated water 740.00 Crude oily sludge/ oily sludge in pit 96707.00 Total quantity of oil contamination undertaken for bioremediation job 137523.00

Application Process Steps 1. Site preparation 2. Installation of Bore wells (Optional) 3. Transfer of oil contaminated soil 4. Application of microbial consortium to the oil contaminated soil 5. Application of nutrients to the oil contaminated soil 6. Tilling and watering 7. Sampling – oil contaminated soil and ground water 8. Sample Analysis – Monitoring Bioremediation

Application Process Steps

Monitoring of Bioremediation Job Monitoring of TPH Monitoring of Fractions of TPH Monitoring of Soil quality Monitoring of Ground water quality Monitoring of Microbial population

Composition of oily sludge undertaken for bioremediation Constituents of oily sludge Composition (%) in samples of CPF Gandhar CTF South Santhal GGS Narimanam Solvent extractable TPH 44.65 7.42 51.50 Water content 27.12 18.73 22.79 Sediments / inorganic 28.23 73.85 25.71 Constituents of TPH   Alkane fraction 68 65 60 Aromatic fraction 20 24 22 NSO fraction 8 3 6 Asphaltane fraction 4 12

Biodegradation of TPH South Santhal CTF, ONGC, Mehsana Asset, India

Biodegradation of TPH CPF,Gandhar, ONGC, Ankleshwar Asset, India

Biodegradation of Alkane &Aromatic fractions of TPH

Preparation of bioremediation site

Application of Microbial Consortium

Tilling of bioremediation site

Watering of bioremediation site

Sampling at the bioremediation site

From waste OIL To fertile SOIL

From waste OIL To fertile SOIL

Bioremediation of oily sludge at BPCL Refinery, Mumbai Before bioremediation After bioremediation

Bioremediation of oil contaminated water at Duliajan (Assam) Before Bioremediation After Bioremediation

Bioremediation site at Oil India Ltd. (Dikom) After bioremediation by Oilzapper Before bioremediation

Bioremediation site in CTF, Geleky, Nazira, ONGC, Assam After Bioremediation by oilzapper Before Bioremediation

Bioremediation site at Mathura refinery After bioremediation Before bioremediation

Soil Fertility Vs. Bioremediation

Fish culturing after bioremediation Site before bioremediation Site after bioremediation Natural vegetation after bioremediation Aquatic birds in site filled with water Fish culturing in site filled with rain water after bioremediation

Pathogenecity Test

Soil Toxicity Study Type of test : Fish toxicity study Samples studied : Sample – 1 : Soil sample from the bioremediation site of Barauni refinery before bioremediation Sample – 2 : Soil sample from the bioremediation site of Barauni refinery after bioremediation Test method : IS : 6582 ( P-II ) : 2001 Results: Sample 1 : No survival of fish in one part sample & one part water Sample 2 : 100% fish survival in one part sample & one part water

Heavy metal in soil before and after Bioremediation Heavy metals Concentration of heavy metals in soil samples (mg/kg soil) Permissible limit as per Hazardous Wastes Management and Handling Rules (Amendment 2003) Before bioremediation After bioremediation Nearby Soil Zn 0.001 Mn BD   Cu Total concentration Ni 0.03 0.02 0.04 5000 ppm Pb Co As 0.05 Cd 0.01 50 ppm Cr (Total) Se 20000 ppm Total concentration BD: Below detection limit (1 ppb)

Soil Characteristics before and after Bioremediation Texture of soil Loamy Soil pH 7.77 7.42 7.51 Soil bulk density 0.99 g/cm3 1.21 g/cm3 Soil water holding capacity 61 % 75 % 74 % Electric conductivity 2.25 mS/cm 1.59 mS/cm 1.48 mS/cm Total soil nitrogen 0.07 % 0.11 % 0.08 % Organic carbon 1.92 % 1.66 % 1.62 % Available phosphorous in soil 11 ppm 19 ppm 9 ppm Parameter Test results Before bioremediation After bioremediation Nearby soil Potassium in soil 124 ppm 150 ppm 120 ppm

Ground water characteristics before and after Bioremediation Heavy metals Permissible limits Concentration in ground water (ppm) BSI/WHO EPA (LIE) Before After Zn 5 ppm 1 ppm 0.07 0.06 Mn 0.1 ppm 1.5 ppm 0.03 0.04 Cu 1 ppm 1 ppm 0.01 0.01 Ni 5 ppb 1 ppm 0.001 0.003 Pb 5 ppb 0.5 ppm 0.003 0.002 Co 5 ppb --- 0.002 0.002 As 5 ppb 0.5 ppm 0.002 0.001 Cd 1 ppb 0.01 ppm 0.001 0.001 Cr (Total) 5 ppb 1 ppm 0.002 0.002 Se 0.5 ppb 0.5 ppm BD BD Physico-chemical properties: pH --- 6 – 10 7.64 7.48 EC mS/cm --- --- 2.97 3.11 10 ppm Oil/grease --- Nil Nil

Publications S Krishnan, P M Sarma and Lal B. 2006. Comparative analysis of phenotypic and genotypic characteristics of two desulphurizing bacterial strains, Mycobacterium phlei SM120-1 and Mycobacterium phlei GTIS10. Letters in Applied Microbiology. 42 : 483-489 Prasad G S, Mayilraj S, Sood N, Singh V, Biswas K, and Lal B. 2005. Candida digboiensis sp.nov. a novel anamorphic yeast species from an acidic tar sludge-contaminated oil field. International Journal of Systematic and Evolutionary Microbiology 55: 633–638. Mishra S, Sarma P M, and Lal B. 2004. Crude oil degradation efficiency of a recombinant lux tagged Acinetobacter baumannii strain and its survival in crude oil contaminated soil microcosm. FEMS Microbiology Letters. 235: 323-331.    Sarma P M, Bhattacharya D, Krishnan S, and Lal B. 2004. Assessment of intraspecies diversity among strains of Acinetobacter baumannii isolated from sites contaminated with petroleum hydrocarbons. Canadian journal of Microbiology. 50: 405-414.   Sarma P M, Bhattacharya D, Krishnan S, and Lal B. 2004. Degradation of polycyclic aromatic hydrocarbon by a newly discovered enteric bacterium, Leclercia adecarboxylata. Applied and Environmental Microbiology. 70: 3163-3166. Bhattacharya D, Sarma P M, Krishnan S, Mishra S, and Lal B. 2003. Evaluation of the Genetic Diversity among the Strains of Pseudomonas citronellolis isolated from oily Sludge Contaminated Sites. Applied and Environmental Microbiology. 60: 1435-1441. Mishra S., Jyot J., Kuhad, R., and Lal B., 2001. Evaluation of inoculum addition to stimulate in situ bioremediation of oily sludge contaminated soil, Applied and Environmental Microbiology, 67:1675-1682. Mishra S., Jyot J., Kuhad, R., and Lal B., 2001. In situ bioremediation potential of an oily sludge degrading bacterial consortium. Current Microbiology 43: 328-335

Patents on OILZAPPER A process for enhanced recovery of crude oil from oil wells using novel microbial consortium. Patent No. PCT/IN 2004/000206. (International Patent) Bioremediation of acidic sludge. Patent No. 385. MUM/2004.  A process for enhanced recovery of crude oil from oil wells using novel multi-microbial strain. Patent No 892/DEL/2003.   Microbial nutrients for biodegradation of oil refinery waste and process for bioremediation of oily sludge and crude oil spill sites. Patent No 168/DL/2000.

Awards won by Oilzapper (Total 10 Awards : International & National)

Users of OILZAPPER Indian Oil Corporation Ltd. (IOCL), India Hindustan Petroleum Corporation Ltd. (HPCL), India Bharat Petroleum Corporation Ltd. (BPCL), India Oil and Natural Gas Corporation Ltd. (ONGC), India Oil India Ltd (OIL), Assam, India Cairn Energy Pty. Ltd., India BG Exploration & Production India Ltd., India Reliance Energy Ltd., India Mangalore Refinery & Petrochemicals Ltd. (MRPL), India Kuwait Oil Company (KOC), Kuwait. Abu Dhabi National Oil Company (ADNOC), Abu Dhabi.

Acknowledgements Dr. R. K. Pachauri, DG, TERI, India Department of Biotechnology, Govt. of India IOCL R&D Centre, India Council of Scientific and Industrial Research (CSIR), Govt. of India MOEF, CPCB & SPCB, Govt. of India Sheba Center for Strategic Studies (SCSS), Yemen

My Team Members

For further clarifications, contact: Ajoy Kumar Mandal, Fellow & Area Convenor Environment and Industrial Biotechnology Division The Energy and Resources Institute (TERI) Darbari Seth Block, India Habitat Centre, Lodhi Road, New Delhi – 110 003, India. Tel: +91 – 11 – 2468 2100, 2111 Fax: + 91 – 11 – 2468 2144, 2145 E_mail: akmandal@teri.res.in Web: http://www.teriin.org/

THANKS

Development of the consortium Different oil contaminated sites in India: Isolation sites (Regional location in India) Geographical location (Latitude & Longitude) Temp. range (0C) Total number of culturable bacterial strains isolated Total number of species among the bacterial strains Latitude Longitude IOCL, Mathura refinery ( N ) 27026 N 77043 E 10 – 40 30 14 IOCL, Barauni refinery ( E ) 25028 N 85059 E 19 – 35 16 8 IOCL, Haldia refinery ( E ) 22000 N 88005 E 15 – 35 26 6 IOCL, Gujarat refinery ( W ) 22016 N 73014 E 20 – 38 9 IOCL, Panipat refinery ( N ) 29023 N 76058 E 15 – 40 20 5 ONGC, Jorhat ( NE ) 26040 N 95035 E 10 – 35 11 4 Oil India Ltd., Duliajan, ( NE ) 27015 N 95015 E 12 IOCL, Digboi refinery ( NE ) 12 – 35 33 IOCL, Guwahati refinery ( NE ) 26009 N 91046 E 22 10 BPCL, Mumbai refinery, ( W ) 18056 N 72051 E 24 – 35 18 7 HPCL, Visakhapatnam ( S ) 17041 N 83017 E 21 – 42 19 CRL, Cochin refinery ( S ) 9055 N 76014 E 19 – 37 BRPL, Bongaigoan refinery ( N ) 73014E 18 – 32 13 Vadinar refinery ( W ) 23044 N 72039 E 15 – 45 3 Reliance refinery, Jamnagar ( W ) 22026 N 70026 E 32 Total 324 110

Development of the consortium Screening for the best degraders ( from Gujarat Refinery, IOCL, India):

Development of the consortium Screening for the best degraders ( from Gujarat Refinery, IOCL, India):

Degradation of oily sludge by selected bacterial strains Without Bacterial Strain With Bacterial Strain

Biodegradation of alkane fraction of crude oil

Biodegradation of alkane compound by A.baumannii

Mineralization of alkane compound by A.baumannii

Biodegradation of aromatic fraction of crude oil by A.odarans

Biodegradation of PAH compound by A.odorans Fluoranthene

Mineralization of aromatic hydrocarbon compound by A.odorans

Biodegradation of sulphur containing compound of crude oil

Microbial count in oil contaminated soil during bioremediation process Time of treatment by microbial consortium TBC (CFU/gm.) of the soil samples at Site I (Well no. 1) Site II (Well no. 205) Site III (Well no. 206) Site IV (Control site) Zero day before application 1.2 X 104 3.1 X 104 2.6 X 104 1.8 X 104 Zero day after application 3.7 X 109 2.6 X 109 3.2 X 109 2.1 X 104 After 15 days 5.9 X 108 7.1 X 108 6.2 X 108 3.8 X 104 After 40 days 3.9 X 108 4.2 X 108 4.6 X 108 6.4 X 104 After 75 days 1.9 X 108 2.1 X 108 2.6 X 108 8.3 X 104 After 135 days 5.3 X 107 6.1 X 107 5.8 X 107 1.1 X 105

Lysimeter: to demonstrate that leachate is clean and free from oil for analysis of oily sludge