Photosynthesis & Cellular Respiration Chapters 8 and 9.

Slides:



Advertisements
Similar presentations
Photosynthesis The Flow of Energy.
Advertisements

Autotrophs – make their own food
Chapter 6: Photosynthesis
Picture Guide to Chapter 8
Where does the energy for living things come from?  Autotrophs – make their own food Plants and other organisms (like algae) can use light energy from.
Chapter 8 Photosynthesis
Energy Flow Through Living Things: Photosynthesis & Cellular Respiration Chapter 8&9.
Cell Energy & Photosynthesis. Source of Energy In most living organisms the energy in most food comes from? the sun autotroph – ‘auto’ – self, ‘troph’
ATP Adenosine Triphosphate (ATP) - One of the principal chemical compounds that living things use to store and release energy.
Photosynthesis.
Where does the energy that living things need come from? Food! You’re not you when you’re hungry!
Photosynthesis.
CHAPTER 6 - PHOTOSYNTHESIS
Chapter 8: Photosynthesis
Photosynthesis Review Chapter 8
Photosynthesis Chapter 8.
ATP Section 8-1 Adenine Ribose 3 Phosphate groups Go to Section:
Chapter 8 Section 2 - Photosynthesis
Photosynthesis Chapter 8.
Chapter 8-3 Light Dependent and Light Independent Reactions.
Photosynthesis. ATP Adenosine Triphosphate is the energy currency of the cell. It does not get destroyed (just like money), but cycles between 2 states.
Chapter 8 Photosynthesis
Photosynthesis. Energy for Life What are autotrophs? Why are they important?
Photosynthesis and Cellular Respiration Energy for Life.
 1. Organism that can capture energy from the sunlight or chemicals and use it to produce its own food from inorganic compounds.    2. Organism that cannot.
ATP ATP Adenosine Triphosphate (ATP) - One of the principal chemical compounds that living things use to store and release energy Adenosine Triphosphate.
Review Questions.  Organisms that make their own food are called _____________.
Chapter 8: Photosynthesis
Chapter 8 Photosynthesis
Photosynthesis & Cellular Respiration Chapters 8 and 9.
Chapter 8.  Energy is the ability to do work  All living organisms require energy  To be active (play sports)  Even while resting (cells require energy.
Chapter 8: Energy and Photosynthesis
Photosynthesis Review Chapter 8. Plants “look green” because they _____________ green wavelengths of light. absorb reflect reflect Photosynthesis in plants.
Photosynthesis. Energy and Life Nearly every activity in modern society depends on Energy…think about it. Nearly every activity in modern society depends.
Photosynthesis Chapter 8. Energy and Life Section 8-1.
Photosynthesis Chapter 8. Chapter 8 study guide Review 1.Where does the energy that living things need come from (originally)? The Sun.
ATP ATP Adenosine Triphosphate (ATP) - One of the principal chemical compounds that living things use to store and release energy Adenosine Triphosphate.
Chapter 8: Photosynthesis 1. Energy and Life Energy – the ability to do work No energy = no life Thermodynamics is the study of the flow and transformation.
Biology Ch. 8 Photosynthesis. 8-1 Energy and Life Energy is the ability to do work. Living things get their energy from food. Most energy from food comes.
8-1 Energy & Life All living things require energyAll living things require energy But what is it and where does it come from?But what is it and where.
Photosynthesis. Pigments of Photosynthesis Pigments are molecules that absorb specific wavelengths (energies) of light and reflect all others. Chlorophyll.
8.1 Energy and Life. Autotrophs  Plants and some other types of organisms are able to use the energy of sunlight to turn water and CO 2 into Sugar Starch.
Photosynthesis Biology Chapter Energy and Life Energy is the ability to do work What is work for cells? Plants, algae, and some bacteria use light.
Photosynthesis. Autotrophs & Heterotrophs Autotrophs – organisms use can make their own food – Some autotrophs capture light energy from the sun in the.
Photosynthesis: Capturing and Converting Energy In the process of photosynthesis, plants convert the energy of sunlight into the energy in chemical bonds.
Photosynthesis Chapter 8. Energy in Living Systems…. Energy is the ability to do work. Autotrophs – Living things that can use energy from the sun or.
Photosynthesis Chapter 8. Autotrophs vs. Heterotrophs All living things depend upon energy to carry out life’s processes. Plants and some other types.
Photosynthesis Chapter 8 (pages ). Where energy comes from light energyPlants and some other types of organisms use light energy from the to produce.
PHOTOSYNTHESIS Chapter 8. Differentiate between Autotrophs and Heterotrophs Autotrophs Organisms that make their own food Plants, algae, and some bacteria.
Chapter 8 Photosynthesis. What is this? 8.1 Energy and Life  Nearly every activity in modern society depends on energy.  What kind of energy is used.
Photosynthesis – Capturing the Energy in Light Chapter 8-1.
Chapter 8 Photosynthesis.  Energy  the ability to do work  1 st law of thermodynamics  Not created nor destroyed  Transferred or transformed  2.
Photosynthesis Chapter 8. Energy and Life Chapter 8.1.
Slide 1 of 20 Copyright Pearson Prentice Hall Biology.
The _______ Cycle Photosynthesis Cellular Respiration.
ADP, ATP and Photosynthesis Copyright Cmassengale.
Energy. ENERGY & LIFE Energy: the ability to do work. Energy comes in many forms: light, heat, electricity, etc. Without energy, living things could not.
Chapter 8 Photosynthesis Biology Ms. Holland. Important !!!!!!!! Copy down Info from the next slide entitled Heterotrophs vs. autotrophs on back of the.
Photosynthesis & Cellular Respiration
Photosynthesis Chapter 8.
Chapter 8: Photosynthesis
Energy of Life.
Remember! In order to carry out cellular processes, cells need ENERGY.
Photosynthesis.
Chapter 8 Cellular Energy 8.1 How Organisms Obtain Energy Autotrophs Autotrophs are organisms that obtain energy by making their own food. (sugar-glucose)
Photosynthesis & Cellular Respiration
Photosynthesis – Capturing the Energy in Light
Chapter 8 Photosynthesis
Chapter 8 Cellular Energy 8.1 How Organisms Obtain Energy Autotrophs Autotrophs are organisms that obtain energy by making their own food. (sugar-glucose)
CHAPTER 8 PHOTOSYNTHESIS
Presentation transcript:

Photosynthesis & Cellular Respiration Chapters 8 and 9

Remember... Autotrophs: can generate their own food are the base of many food chains include plants, bacteria, etc.

8-1 Energy and Life Autotrophs are any organism that can make their own energy. Photoautotrophs undergo photosynthesis which changes light energy to chemical energy. – Ex. Plants and cyanobacteria Chemoautotrophs undergo chemosynthesis which changes inorganic chemicals such as hydrogen sulfate into chemical energy. – Ex. Nitrobacteria

Chemical Energy ATP We use Adenosine Triphosphate Contains  adenosine,  ribose, and  3 phosphate groups When ATP loses a phosphate, it becomes ADP (only has 2 phosphates) and energy is released What does ATP do? – Movement in the cell (organelles) – Moves ions across membranes (sodium and potassium for many reactions)

Energy Most cells only contain small amounts of ATP, they can’t store large amounts Get new ATP from carbohydrates Where do the carbohydrates get the stored energy?

8-2 Photosynthesis overview Early discoveries: Jan Van Helmont ( )... Where does a plant get its mass as it grows? From the soil? Weighed the soil... Weighed the tree... Weighed the water... After 5 years, the tree had gained 150 lbs. The weight of the soil was nearly the same as when he started.

Van Helmont assumed the weight came from the water. Joseph Priestley ( )... Best known for his study of the chemistry of gases Plant releases a substance that keeps the candle burning... What was released by the plant?

Jan Ingenhousz ( ) Light is essential to plant respiration. Aquatic plants produce oxygen bubbles in the light, but not in the dark. Process of Science!

Properties of Light White light from the sun is composed of a range of wavelengths. Only 1-3% of light energy is harvested by plants = not very efficient James Clerk Maxwell- 1 st person to recognize electromagnetic spectrum

The Photosynthesis Equation Photosynthesis uses the energy of sunlight to convert water and carbon dioxide into oxygen and high-energy sugars Plants use the sugars to produce complex carbohydrates Such as starches. Plants obtain CO 2 from the air or water.

Absorption of Light by Chlorophyll a and Chlorophyll b VBGYOR Chlorophyll b Chlorophyll a Section 8-2 page 207 Figure 8-5 Chlorophyll Light Absorption In addition to water and CO 2, photosynthesis requires light and chlorophyll, a molecule in chloroplasts. Lights and Pigments Chlorophyll is the plants principle pigment

Light Used in Photosynthesis During photosynthesis, the chlorophyll pigments can absorb only Some wavelengths of light... The grana of the chloroplasts absorb mainly blue-violet and red-orange Chlorophyll – main pigment absorbing light for photosynthesis Two types: 1. Chlorophyll a 2. Chlorophyll b Chlorophyll does not absorb light well in the green region of the spectrum. Why are leaves sometimes red or yellow?

Photosynthesis takes place in the chloroplasts 8-3 The Reactions of Photosynthesis Thylakoids are found in the chloroplasts. Thylakoids contain the pigment chlorophyll that captures light energy. Text page 208

Photosynthesis occurs in two stages The light-dependent reactions require light to work = Light Reaction The light-independent reactions do not require light = Dark Reaction Light CO 2 Sugars O2O2 Chloroplast See Text Page 209

Light reactions are dependent on light and occurs only during the day Light reactions involve: a. splitting water to release oxygen, b. energy production (ATP), and c. reduction of NADP + to NADPH The high energy NADPH is used to help build molecules the cell needs... LIKE GLUCOSE! Energy comes from electrons “falling” to a more stable energy level.... Kinetic energy

Light-Dependent Reactions (con’t)  Produce oxygen gas  Convert ADP and NADP + into energy carriers ATP and NADPH 1.Photosynthesis begins when pigments in photosystem II absorb light 2.Energy from the light excites electrons 3.Electron transport and H + ions from water-splitting result in a positive charge inside the thylakoid, and negative charge outside 4.This difference provides the energy to make ATP (like a battery!) See Figure 8-10 (page 211)

Light Independent Reactions Stroma of the Chloroplast Also known as the Calvin Cycle They occur whether or not light is present. The The Calvin cycle uses ATP and energized ions from NADPH from the light-dependent reactions to produce high-energy sugars. Uses 6 carbon dioxide molecules to make a single 6-carbon sugar Text page

Photosynthesis review... Factors affecting photosynthesis... shortages of water (reactant) temperature light intensity

Photorespiration Dark Reaction can’t tell difference between oxygen and carbon dioxide. If it uses Oxygen = waste It is only 30% efficient

Factors that Affect Rates- light At low light intensity, photosynthesis occurs slowly because only a small quantity of ATP and NADPH is created by the light dependent reactions. As light intensity increases, more ATP and NADPH are created, thus increasing the photosynthetic rate. At high light intensity, photosynthetic rate levels out, not due to light intensity but due to other limiting factors, including competition between oxygen and carbon dioxide for the active site on RUBP carboxylase.

Factors that Affect Rates- carbon dioxide At high concentrations, the rate of photosynthesis begins to level out due to factors not related to carbon dioxide concentration. One reason might be that some of the enzymes of photosynthesis are working at their maximum rate. In general, carbon dioxide is found in low concentration in the atmosphere, and so atmospheric carbon dioxide levels may be a major limiting factor on photosynthesis when at low levels.

Factors that Affect Rates- temperature As temperature increases above freezing, the rate of photosynthesis increases. This occurs because molecules are moving more quickly and there is a greater chance of a collision resulting in a chemical reaction. At some point, a temperature is reached that is an optimum temperature. The photosynthetic reaction rate is at its quickest rate at this point. Above that temperature, the enzymes begin to denature, slowing the rate of photosynthesis until a temperature is reached where photosynthesis does not occur at all.

Cellular Respiration and Glycolysis Energy arrives from the sun and is captured by green photosynthetic plants, and stored in the chemical bonds of glucose. Non‐photosynthetic organisms must obtain their energy by the breakdown of these energy rich storage molecules in order to release the energy for their use. Photosynthesis stores this energy in glucose; glycolysis and cellular respiration release it. These are the processes by which cells can "burn" or breakdown glucose into CO2 and H2O and transfer most of the energy to the phosphate bonds of ATP.

Cellular Respiration PREVIEW Glucose > ATP Anaerobic- w/o O 2 Aerobic- w O 2 C 6 H 12 O O 2 → 6 CO H 2 O + ATP PHOTOSYNTHESIS BACKWARDS!