PD '07 Kobe -- G. Varrner 1 Compact, low-power and (deadtimeless) high timing precision photodetector readout G. Varner and L. Ruckman [University of Hawaii]

Slides:



Advertisements
Similar presentations
TDC130: High performance Time to Digital Converter in 130 nm
Advertisements

Possible ASIC Options within a Common Readout Infrastructure Gary S. Varner and Larry L. Ruckman OCM2 Trg/DAQ Parallel Session July 4 th, 2008.
Application of the DRS Chip for Fast Waveform Digitizing Stefan Ritt Paul Scherrer Institute, Switzerland.
Barrel PID upgrade K. Inami (Nagoya-u) and PID group - R&D status - TOP counter - iTOP - Focusing DIRC - To do, cost estimation.
January 28th, 2010Clermont Ferrand, Paul Scherrer Institut DRS Chip Developments Stefan Ritt.
SKIROC New generation readout chip for ECAL M. Bouchel, J. Fleury, C. de La Taille, G. Martin-Chassard, L. Raux, IN2P3/LAL Orsay J. Lecoq, G. Bohner S.
ADC and TDC Implemented Using FPGA
A scalable DAQ system using the DRS4 sampling chip H.Friederich 1, G.Davatz 1, U.Hartmann 2, A.Howard 1, H.Meyer 1, D.Murer 1, S.Ritt 2, N.Schlumpf 2 1.
Fabrication Process Options Gary Varner Specification Details are often Application Specific Is IBM 130nm always the best choice? 1 6-OCT-2010 Electronics.
ANITA RF Conditioning and Digitizing Gary S. Varner University of Hawai, i, Manoa ANITA Collaboration Meeting UC, Irvine 24,25 November 2002.
Design and Performance of the 6 GS/s Waveform Digitizing Chip DRS4 Stefan Ritt Paul Scherrer Institute, Switzerland at 40 mW per channel.
SURF ‘n TURF Gary S. Varner University of Hawai, i, Manoa ANITA Collaboration UC Irvine April 7 th, 2005.
Large Area, High Speed Photo-detectors Readout Jean-Francois Genat + On behalf and with the help of Herve Grabas +, Samuel Meehan +, Eric Oberla +, Fukun.
First detector and DAQ test results from the TEDA beamline Matt Andrew, Mike Hadmack, Bryce Jacobson, Gary Varner University of Hawaii Experience from.
Fast sampling for Picosecond timing Jean-François Genat EFI Chicago, Dec th 2007.
Development of a 20 GS/s Sampling Chip in 130nm CMOS Technology Jean-Francois Genat On behalf of Mircea Bogdan 1, Henry J. Frisch 1, Herve Grabas 3, Mary.
TOF Electronics Qi An Fast Electronics Lab, USTC Sept. 16~17, 2002.
Fast Waveform Digitizing in Radiation Detection using Switched Capacitor Arrays Stefan Ritt Paul Scherrer Institute, Switzerland.
Report on SiPM Tests SiPM as a alternative photo detector to replace PMT. Qauntify basic characteristics Measure Energy, Timing resolution Develop simulation.
A 4-Channel Waveform Sampling ASIC in 130 nm CMOS E. Oberla, H. Grabas, J.F. Genat, H. Frisch Enrico Fermi Institute, University of Chicago K. Nishimura,
1 S. E. Tzamarias Hellenic Open University N eutrino E xtended S ubmarine T elescope with O ceanographic R esearch Readout Electronics DAQ & Calibration.
K.C.RAVINDRAN,GRAPES-3 EXPERIMENT,OOTY 1 Development of fast electronics for the GRAPES-3 experiment at Ooty K.C. RAVINDRAN On Behalf of GRAPES-3 Collaboration.
A Front End and Readout System for PET Overview: –Requirements –Block Diagram –Details William W. Moses Lawrence Berkeley National Laboratory Department.
Development of high speed waveform sampling ASICs Stefan Ritt - Paul Scherrer Institute, Switzerland NSNI – 2010, Mumbai, India.
Deeper Sampling CMOS Transient Waveform Recording ASICs
1 iTOP readout firmware development K. Nishimura and G. Varner 25-MAR-2011 lDAQ meeting Not shown: Joshua Sopher (firmware) Lili Zhang (DSP coding)
The DRS2 Chip: A 4.5 GHz Waveform Digitizing Chip for the MEG Experiment Stefan Ritt Paul Scherrer Institute, Switzerland.
1 Status Report on ADC LPC Clermont-Ferrand Laurent ROYER, Samuel MANEN.
Front-End Electronics for G-APDs Stefan Ritt Paul Scherrer Institute, Switzerland.
Jean-François Genat Fast Timing Workshop June 8-10th 2015 FZU Prague Timing Methods with Fast Integrated Technologies 1.
SKIROC ADC measurements and cyclic ADC LPC Clermont-Ferrand Laurent ROYER, Samuel MANEN Calice/Eudet electronic meeting Orsay June.
S. Bota – Calorimeter Electronics overview - July 2002 Status of SPD electronics Very Front End Review of ASIC runs What’s new: RUN 4 and 5 Next Actions.
VMM Update Front End ASIC for the ATLAS Muon Upgrade V. Polychronakos BNL RD51 - V. Polychronakos, BNL10/15/131.
Juin 1st 2010 Christophe Beigbeder PID meeting1 PID meeting Electronics Integration.
May 23rd, th Pisa Meeting, Elba, Paul Scherrer Institute Gigahertz Waveform Sampling: An Overview and Outlook Stefan Ritt.
Update on works with SiPMs at Pisa Matteo Morrocchi.
Christophe Beigbeder - SuperB meeting - SLAC Oct PID electronics summary electronics (on behalf of PID electronics group)
PHOTOTUBE SCANNING SETUP AT THE UNIVERSITY OF MARYLAND Doug Roberts U of Maryland, College Park.
J.Maalmi, D.Breton – SuperB Workshop – Frascati – September 2010 Electronics for the two-bar test. D.Breton & J.Maalmi (LAL Orsay)
1 Status Report on ADC LPC Clermont-Ferrand Laurent ROYER, Samuel MANEN Calice/Eudet electronic meeting London 2008.
Page Detector and Electronics R&D for picosecond resolution, single photon detection and imaging J.S. MilnesPhotek Ltd T.M. ConneelyUniversity.
Jihane Maalmi – Journées VLSI IN2P Towards picosecond time measurement using fast analog memories D.Breton & J.Maalmi (LAL Orsay), E.Delagnes (CEA/IRFU)
1 The Scintillation Tile Hodoscope (SciTil) ● Motivation ● Event timing/ event building/ software trigger ● Conversion detection ● Charged particle TOF.
 13 Readout Electronics A First Look 28-Jan-2004.
Transient Waveform Recording Utilizing TARGET7 ASIC
DAQ ACQUISITION FOR THE dE/dX DETECTOR
ETD meeting Architecture and costing On behalf of PID group
WBS 1.03 Readout Systems Specifications, Design and Acceptance
A 2 Gsps Waveform Digitizer ASIC in CMOS 180 nm Technology
Overview of SuperB Particle identification, and work towards the TDR
Jinfan Chang Experimental Physics Center , IHEP Feb 18 , 2011
Update of test results for MCP time measurement with the USB WaveCatcher board D.Breton & J.Maalmi (LAL Orsay), E.Delagnes (CEA/IRFU)
CTA-LST meeting February 2015
ETD meeting Electronic design for the barrel : Front end chip and TDC
Update of time measurement results with the USB WaveCatcher board & Electronics for the DIRC-like TOF prototype at SLAC D.Breton , L.Burmistov,
Ongoing R&D in Orsay/Saclay on ps time measurement: a USB-powered 2-channel 3.2GS/s 12-bit digitizer D.Breton (LAL Orsay), E.Delagnes (CEA/IRFU) Séminaire.
TDC at OMEGA I will talk about SPACIROC asic
A First Look J. Pilcher 12-Mar-2004
Possible Upgrades ToF readout Trigger Forward tracking
Front-end electronic system for large area photomultipliers readout
A Low Power Readout ASIC for Time Projection Chambers in 65nm CMOS
Next generation 3D digital SiPM for precise timing resolution
PID electronics for FDIRC (Focusing Detector of Internally Reflected Cherenkov light) and FTOF (Forward Time of Flight) Christophe Beigbeder and Dominique.
The New Readout Electronics for the SLAC Focusing DIRC Prototype (SLAC experiment T-492 ) L. L. Ruckman, G. S. Varner Instrumentation Development Laboratory.
MCP Electronics Time resolution, costs
Stefan Ritt Paul Scherrer Institute, Switzerland
PID meeting Mechanical implementation Electronics architecture
TOF read-out for high resolution timing
Ongoing R&D in Orsay/Saclay on ps time measurement: status of the USB-powered 2-channel 3.2GS/s 12-bit digitizer D.Breton & J.Maalmi (LAL Orsay), E.Delagnes.
Electronics for the PID
Presentation transcript:

PD '07 Kobe -- G. Varrner 1 Compact, low-power and (deadtimeless) high timing precision photodetector readout G. Varner and L. Ruckman [University of Hawaii] J. Va’vra and J. Schwiening [SLAC] 29-JUN-07 Progress in expensive PD recording Precision timing detection PROMPT concept T-492 beam test Next Generation readout concepts

PD '07 Kobe -- G. Varrner 2 TDC Performance ~0.37ns QDC Performance Inexpensive Options: FPGA based readout ASIC: ATWD, DRS,others (KamLAND, IceCube, MEG, MAGIC) J. Instr. 1 P07001 (2006)

PD '07 Kobe -- G. Varrner 3 A Different kind of  Detector 20-30cm vs nm (bandwidth MHz) Completely solar powered (tight demands on power) GSa/s ~320ps Measured ~7m Antarctic Impulsive Transient Antenna (ANITA)

PD '07 Kobe -- G. Varrner 4 Large Analog Bandwidth Recorder and Digitizer with Ordered Readout [LABRADOR] 8+1 chan. * samples Straight Shot RF inputs Random access: Common STOP acquisition 3.2 x 2.9 mm Conversion in 21  s (all 2340 samples) Data transfer takes 80  s Ready for next event in ~50  s Switched Capacitor Array (SCA) Massively parallel Wilkinson ADC array

PD '07 Kobe -- G. Varrner 5 LAB3 Architecture Details No missing codes Linearity as good as can make ramp Can bracket range of interest

PD '07 Kobe -- G. Varrner 6 LABRADOR sampling & linearity Excellent linearity Sampling rates up to 4 GSa/s with voltage overdrive 2.6GSa/s 12-bit ADC

PD '07 Kobe -- G. Varrner 7 Bandwidth Evaluation Transient Impulse FFT Difference Frequency [GHz] f 3dB ~> 1.2GHz

PD '07 Kobe -- G. Varrner 8 Jiwoo Nam UC Irvine

PD '07 Kobe -- G. Varrner 9 Finer Calibration 600MHz Clock Estimated Limit

PD '07 Kobe -- G. Varrner 10 High Speed sampling LABRADORCommercial Sampling speed GSa/s2 GSa/s Bits/ENOBs12/9-108/7.4 Power/Chan.<= 0.05W5-10W

PD '07 Kobe -- G. Varrner 11 Good performance, but –CFD not compact, rate dependent (SLAC 16 channel card is 9U) –High-power, potentially noisy if inside detector –Buffer depth limitations (already an issue for TOF upgrade) Precision Timing Recording Options Constant Fraction Discriminator + Multi-Hit TDC Measurements from ALICE-TOF Without INL compensation After INL compensation +

PD '07 Kobe -- G. Varrner 12 Exploration Direction For high channel counts, prefer to do the measurement at the photodetector (avoids cables which take up space and leads to dispersion for fast timing signals) Noise (interference) inside detector No fast discriminators (power/heat) Precision timing  waveform sampling Explore different photo-detectors Highly integrated detector & electronics Lower gain Magnetic field robustness Modular, cost effective in large volumes (Advanced focusing DIRC could be 250,000 channels)

PD '07 Kobe -- G. Varrner 13 Precision Timing Motivation (1) Jerry Va’vra

PD '07 Kobe -- G. Varrner 14 Motivation (2) --Chromatic Correction

PD '07 Kobe -- G. Varrner 15 Blank slide Set-up in End Station A at SLAC, where did ANITA calibration

PD '07 Kobe -- G. Varrner 16 Blank slide 7 x 64 PMT channels (448 total), not enough SLAC electronics, proposal to instrument some with new electronics (prototyped under DOE Advanced Detector Research award)

PD '07 Kobe -- G. Varrner 17 UH Prototype Readout Chain G = 5x10 5 single p.e. ~1mV

PD '07 Kobe -- G. Varrner channel Amplifier Stack based on RF amplifiers (cheap, high BW) Within MCP profile Ribbon cable (differential analog) output

PD '07 Kobe -- G. Varrner 19 Integration Test Results Raw signal Scanning Test Set-up: Measured noise ~4mVrms Voltage Gain ~200 High bandwidth

PD '07 Kobe -- G. Varrner BLAB1 ASICs Processed hit times via CAMACFull waveforms over USB2 Differential inputs from amp boards

PD '07 Kobe -- G. Varrner 21 Buffered LABRADOR (BLAB1) ASIC 64k samples deep Multi-MSa/s to Multi-GSa/s 12-64us to form Global trigger 3mm x 2.8mm, TSMC 0.25um

PD '07 Kobe -- G. Varrner 22 Buffered LABRADOR (BLAB1) ASIC 10 real bits of dynamic range Measured Noise 1.4mV 1.8V dynamic range

PD '07 Kobe -- G. Varrner 23 BLAB1 Analog Bandwidth A few fixes (lower power, higher BW) Multi-channel BLAB2 -3dB ~300MHz

PD '07 Kobe -- G. Varrner 24 BLAB1 Sampling Speed 200ps/sample Single sample: 200/SQRT(12) ~ 58ps But, have Complete Waveform Information Can store 13us at 5GSa/s (before wrapping around)

PD '07 Kobe -- G. Varrner MHz sine wave 6GSa/s Pre-calibration

PD '07 Kobe -- G. Varrner 26 Calibration (1) Linear variation across chip Due to IR drop in feed voltage (can be improved) 6GSa/s 400MHz sine wave Storage Cell Number Extracted Period [ns]

PD '07 Kobe -- G. Varrner 27 Calibration (2) After basic linearity and bin-by-bin correction ~11ps intrinsic (~8ps possible) 6GSa/s 400MHz sine wave Extracted Period [ns] 15ps Linearity only

PD '07 Kobe -- G. Varrner 28 Bench Test timing ~27ps for two edges ~20ps for each edge 6GSa/s ~30ns pulse pair ~40ps for PMT like Signals (working on algorithm)

PD '07 Kobe -- G. Varrner 29 Temperature Dependence 0.2%/degree C (can correct) 6GSa/sSample aperature (172ps = 5.8GSa/s) Matches SPICE simulation

PD '07 Kobe -- G. Varrner 30 Typical single p.e. signal [Burle] Overshoot/ringing Due to Higher bandwidth, “warts” of signal appear

PD '07 Kobe -- G. Varrner 31 Measured Burle Cross-talk Raw signal With higher bandwidth, nature of ringing well seen. By measuring waveforms, some hope to correct Electronics only: <1% crosstalk

PD '07 Kobe -- G. Varrner 32 Interleaved Operation LARC ASIC: 64 5 GSa/s = 384GSa/s  Streak camera type applications – ps timing Single shot! uncalibrated room for improvement push BW higher

PD '07 Kobe -- G. Varrner 33 Vacuum MCP-PMT Issues lower Q.E., fill factor High voltage operation, longevity High density packing Magnetic field effects Irreducible Manufacturing Costs How to get to a large system? SBIR with LightSpin Technologies Proprietary Solid-State MCP demonstrator (1 x 1024) No HV, high Q.E. (200 – 900nm!!) Lower dark count rate than Si-PM Mate with BLAB variant, determine timing resolution

PD '07 Kobe -- G. Varrner 34 f-DIRC Array Concept Many k Photodetector channels SiPMs/APDs ASIC Carrier Socket Single Module: (side-view) Tiled Array Readout Board

PD '07 Kobe -- G. Varrner 35 High Precision Timing Results –Initial results promising –No fundamental limit –Practical issues important (T0) Plans: –T-492 test of f-DIRC (ESA SLAC) –LARC, BLAB2 ASICs –Direct integration test with MPPC/SS-MCP Push PD technology Future: –Low-costs in volume –Integrate amplifier for higher gain –Explore limits of analog BW/sampling Summary

PD '07 Kobe -- G. Varrner 36 Backup slide -- cables!

PD '07 Kobe -- G. Varrner 37

PD '07 Kobe -- G. Varrner 38 Blank slide