Dr Renato Turchetta CMOS Sensor Design Group CCLRC - Technology Calice PDR, RAL, 5 th May 2006 Introduction to CMOS Monolithic Active Pixel Sensors (MAPS)

Slides:



Advertisements
Similar presentations
Konstantin Stefanov, Rutherford Appleton Laboratory4 th ECFA-DESY Workshop, 1-4 April 2003p. 1 CCD-based Vertex Detector - LCFI status report Konstantin.
Advertisements

1 Konstantin Stefanov, CCLRC Rutherford Appleton Laboratory LCFI Status Report: Sensors for the ILC Konstantin Stefanov CCLRC Rutherford Appleton Laboratory.
Latest Developments from the CCD Front End LCWS 2005 Stanford Joel Goldstein, RAL for the LCFI Collaboration.
1 Konstantin Stefanov, CCLRC Rutherford Appleton Laboratory 1 26 September 2006 LCFI Status Report: Vertex Detector R&D Konstantin Stefanov CCLRC Rutherford.
January US LC Workshop SLAC – Chris Damerell 1 Strategies for pickup and noise suppression with different vertex detector technologies Chris Damerell.
LCFI Collaboration Status Report LCWS 2004 Paris Joel Goldstein for the LCFI Collaboration Bristol, Lancaster, Liverpool, Oxford, RAL.
Dr Renato Turchetta Instrumentation Department CMOS Monolithic Active Pixel Sensors (MAPS) for the ILC.
ISIS and SPiDeR Zhige ZHANG STFC Rutherford Appleton Laboratory.
V. Re 1 INFN WP3 Microelectronics and interconnection technology WP3 AIDA meeting, CERN, May 19, 2010 Valerio Re - INFN.
HIPPO, a Flexible Front-End Signal Processor for High-Speed Image Sensor Readout Carl Grace, Dario Gnani, Jean-Pierre Walder, and Bob Zheng June 10, 2011.
CMOS Active Pixel Sensors: An Introduction Zeynep Dilli, Neil Goldsman, Martin Peckerar, Nibir Dhar.
UK CALICE plans Birmingham, Cambridge, Imperial, Manchester,RAL,RHUL,UCL.
1 Research & Development on SOI Pixel Detector H. Niemiec, T. Klatka, M. Koziel, W. Kucewicz, S. Kuta, W. Machowski, M. Sapor, M. Szelezniak AGH – University.
M. Szelezniak1PXL Sensor and RDO review – 06/23/2010 STAR PXL Sensors Overview.
Random Telegraph Signal (RTS) in CMOS Monolithic Active Pixel Sensors (MAPS) for charged particle tracking. Outline Reminder: The operation principle of.
Development of an Active Pixel Sensor Vertex Detector H. Matis, F. Bieser, G. Rai, F. Retiere, S. Wurzel, H. Wieman, E. Yamamato, LBNL S. Kleinfelder,
 SLIM - MimoTERA – chip design MimoTera:  AMS CUA 0.6 µm CMOS process with 14 µm epitaxial layer – (MIMOSA V),  Chip size: 17350×19607µm 2,  delivery.
First results from the HEPAPS4 Active Pixel Sensor
6 th International Conference on Position Sensitive Detectors, Leicester 11/09/2002 Yu.Gornushkin Outline: G. Claus, C.
Microelectronics Design Group RAL - Microelectronics Open Day 28 th June 2005 Intelligent Digital Sensors Jamie Crooks.
1 Konstantin Stefanov, CCLRC Rutherford Appleton Laboratory 1 ECFA 2006, Valencia 1 MAPS-based ECAL Option for ILC ECFA 2006, Valencia, Spain Konstantin.
Renato Turchetta CMOS Sensor Design Group CCLRC Technology CALICE front-end update 06 September 2006.
1 Instrumentation DepartmentMicroelectronics Design GroupR. Turchetta 3 April 2003 International ECFA/DESY Workshop Amsterdam, 1-4 April 2003 CMOS Monolithic.
Overview of MAPS detectors Fergus Wilson Rutherford Appleton Laboratory (with lots of input and slides from Renato Turchetta and the RAL Sensor Design.
A new idea of the vertex detector for ILC Y. Sugimoto Nov
Progress Towards Active Pixel Sensor Detectors for Solar Orbiter Dr Nick Waltham Head of Imaging Systems Division, Space Science & Technology Department,
RAL S&T Rolling Grant CMOS Active Pixel Sensor Development Nov 2004 Nick Waltham Space Science and Technology Department and Mark Prydderch Instrumentation.
Dr Renato Turchetta CMOS Sensor Design Group CCLRC Technology Large Area Monolithic Active Pixel Sensors.
First Results from Cherwell, a CMOS sensor for Particle Physics By James Mylroie-Smith
Dr Renato Turchetta CMOS Sensor Design Group CCLRC Technology CMOS Image Sensors for non-HEP Applications.
Fully depleted MAPS: Pegasus and MIMOSA 33 Maciej Kachel, Wojciech Duliński PICSEL group, IPHC Strasbourg 1 For low energy X-ray applications.
1 An introduction to radiation hard Monolithic Active Pixel Sensors Or: A tool to measure Secondary Vertices Dennis Doering*, Goethe University Frankfurt.
Recent developments on Monolithic Active Pixel Sensors (MAPS) for charged particle tracking. Outline The MAPS sensor (reminder) MIMOSA-22, a fast MAPS-sensor.
First tests of CHERWELL, a Monolithic Active Pixel Sensor. A CMOS Image Sensor (CIS) using 180 nm technology James Mylroie-Smith Queen Mary, University.
Foundry Characteristics
Characterisation of Active Pixel Sensors
Strasbourg, France, 17 December, 2004, seminairGrzegorz DEPTUCH  MAPS technology decoupled charge sensing and signal transfer (improved radiation.
Joel Goldstein, RAL 4th ECFA/DESY LC Workshop, 1/4/ Vertex Readout Joel Goldstein PPd, RAL 4 th ECFA/DESY LC Workshop DAQ Session 1 st April 2003.
Monolithic Active Pixel Sensors (MAPS) News from the MIMOSA serie Pierre Lutz (Saclay)
Technology Overview or Challenges of Future High Energy Particle Detection Tomasz Hemperek
UK Activities on pixels. Adrian Bevan 1, Jamie Crooks 2, Andrew Lintern 2, Andy Nichols 2, Marcel Stanitzki 2, Renato Turchetta 2, Fergus Wilson 2. 1 Queen.
CMOS Sensor Development Guess:CMOS sensors will become detector of choice o Based on commercially useful processes – cheap (relatively) o Inherently radiation.
Fig. 1: Cross section of a circular DEPMOS- FET pixel cell. Charges collected in the “in- ternal gate’ modulate the transistor current. DEPMOSFET team,
Irfu saclay Development of fast and high precision CMOS pixel sensors for an ILC vertex detector Christine Hu-Guo (IPHC) on behalf of IPHC (Strasbourg)
L.Royer– Calice LLR – Feb Laurent Royer, J. Bonnard, S. Manen, P. Gay LPC Clermont-Ferrand R&D pole MicRhAu dedicated to High.
A Fast Monolithic Active Pixel Sensor with in Pixel level Reset Noise Suppression and Binary Outputs for Charged Particle Detection Y.Degerli 1 (Member,
Vertex 2008 July 28–August 1, 2008, Utö Island, Sweden CMOS pixel vertex detector at STAR Michal Szelezniak on behalf of: LBNL: E. Anderssen, L. Greiner,
SiD Detector Baseline (A brief review) Andy White University of Texas at Arlington.
CMOS MAPS with pixel level sparsification and time stamping capabilities for applications at the ILC Gianluca Traversi 1,2
Glow Experiment Outline Brandon Hanold. Outline 1.Glow Description 2.Experiment Design 3.Acquisition Loop Variables and Keywords 4.Reduction Results 5.Reduction.
Pixel detector development: sensor
W. Kucewicz a, A. A.Bulgheroni b, M. Caccia b, P. Grabiec c, J. Marczewski c, H.Niemiec a a AGH-Univ. of Science and Technology, Al. Mickiewicza 30,
ULTIMATE: a High Resolution CMOS Pixel Sensor for the STAR Vertex Detector Upgrade Christine Hu-Guo on behalf of the IPHC (Strasbourg) CMOS Sensors group.
-1-CERN (11/24/2010)P. Valerio Noise performances of MAPS and Hybrid Detector technology Pierpaolo Valerio.
Jan p 11 The aims of the meeting are to prepare ourselves for interacting with STFC as the situation unfolds. Specifically: Review and summarise.
Detector DESY for the European XFEL. Heinz Graafsma; Head of FS-DS; DESY-Hamburg AIDA-Workshop; Hamburg; March 2012.
MIMO  3 Preliminary Test Results. MIMOSTAR 2 16/05/2007 MimoStar3 Status Evaluation of MimoStar2 chip  Test in Laboratory.
Monolithic Pixel R&D at LBNL M Battaglia UC Berkeley - LBNL Universite' Claude Bernard – IPN Lyon Monolithic Pixel Meeting CERN, November 25, 2008 An R&D.
MISTRAL & ASTRAL: Two CMOS Pixel Sensor Architectures dedicated to the Inner Tracking System of the ALICE Experiment R&D strategy with two main streams.
M. TWEPP071 MAPS read-out electronics for Vertex Detectors (ILC) A low power and low signal 4 bit 50 MS/s double sampling pipelined ADC M.
Monolithic and Vertically Integrated Pixel Detectors, CERN, 25 th November 2008 CMOS Monolithic Active Pixel Sensors R. Turchetta CMOS Sensor Design Group.
Highlights from the VTX session Marc Winter & Massimo Caccia R&D reports: – DEPFET (M. Trimpl) – CCD (S. Hillert) – UK-CMOS (J.Velthuis) – Continental-CMOS.
Fast Full Scale Sensors Development IPHC - IRFU collaboration MIMOSA-26, EUDET beam telescope Ultimate, STAR PIXEL detector Journées VLSI 2010 Isabelle.
Comparison of a CCD and the Vanilla CMOS APS for Soft X-ray Diffraction Graeme Stewart a, R. Bates a, A. Blue a, A. Clark c, S. Dhesi b, D. Maneuski a,
Presented by Renato Turchetta CCLRC - RAL 7 th International Conference on Position Sensitive Detectors – PSD7 Liverpool (UK), September 2005 R&D.
H.-G. Moser Halbleiterlabor der Max-Planck- Institute für Physik und extraterrestrische Physik VIPS LP09, Hamburg August 18, R&D on monolithic and.
Design and Characterization of a Novel, Radiation-Resistant Active Pixel Sensor in a Standard 0.25 m CMOS Technology P.P. Allport, G. Casse, A. Evans,
Status of the UK active pixel collaboration
Rita De Masi IPHC-Strasbourg on behalf of the IPHC-IRFU collaboration
R&D of CMOS pixel Shandong University
Presentation transcript:

Dr Renato Turchetta CMOS Sensor Design Group CCLRC - Technology Calice PDR, RAL, 5 th May 2006 Introduction to CMOS Monolithic Active Pixel Sensors (MAPS)

Calice PDR 2 CMOS Monolithic Active Pixel Sensor (MAPS)  Standard CMOS technology  all-in-one detector-connection- readout = Monolithic  small size / greater integration  low power consumption  radiation resistance  system-level cost  Increased functionality  increased speed (column- or pixel- parallel processing)  random access (Region-of-Interest ROI readout) Column-parallel ADCs Data processing / Output stage Readout control I2C control (Re)-invented at the beginning of ’90s: JPL, IMEC, …

Calice PDR 3 RAL Large area sensors EUVAPS04 12 million pixels 5  m pitch Prototype for ESA Solar Orbiter Backthinned down to epi ENC = 17 e- rms Vanilla/PEAPS 512x512 pixels 25  m pitch ENC <~ 25 e- rms (kTC) Flushed reset 100 fps 12-bit SAR ADC Region-Of-Interest (ROI) readout: six 6x6 fps RAL_HEPAPS4 1026x384 pixels 15  m pitch ENC <~ 15 e- rms (reset- less) 5 MHz line rate Rad-hard: > Mrad

Calice PDR 4 Metal layers Polysilicon P-WellN-WellP-Well N+ P+N+ MAPS for charged particle detection Dielectric for insulation and passivation Charged particles 100% efficiency; when NMOS design only Radiation P-substrate (~100s  m thick) P-epitaxial layer (up to to 20  m thick) Potential barriers R. Turchetta et al., NIM A 458 (2001) )

Calice PDR 5 Signal from individual particles Number of pixels in a “3x3” cluster Cluster in S/N Beta source (Ru106) test results. Sensors HEPAPS2. Signal spread

Calice PDR 6 3T pixel Baseline (minimum) design. Low noise detection of MIPs first demonstrated in Since then, with a number of technologies/epi thickness: AMS 0.6/14, 0.35/∞, 0.35/14, 0.35/20, AMIS (former MIETEC) 0.35/4, IBM 0.25/2, TSMC 0.35/10, 0.25/8, 0.25/∞, UMC 0.18/∞ Noise <~ 10 e- rms Spatial resolution 1.5  20  m pitch, with full analogue readout Good radiation hardness Low power Speed: rolling shutter can be a limit

Calice PDR 7 In-pixel digitisation OPIC (On-Pixel Intelligent CMOS Sensor). Designed by RAL within UK MI3 consortium In-pixel ADC (single-slope 8-bit) In-pixel TDC Data sparsification Test structure. 3 arrays of 64x72 30  m pitch Fabricated in TSMC 0.25/8 PMOS in pixel  sub-100% efficiency Starting point for R&D on ILC-ECAL Calice Image obtained with the sensor working in TDC mode with sparse data scan. White pixels are those which didn’t cross threshold

Calice PDR 8 Experimental results In-pixel ADCTiming mode capture In-pixel thresholding Sparse data (timing mode)