Lecture 4 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.

Slides:



Advertisements
Similar presentations
Request Dispatching for Cheap Energy Prices in Cloud Data Centers
Advertisements

SpringerLink Training Kit
Luminosity measurements at Hadron Colliders
From Word Embeddings To Document Distances
Choosing a Dental Plan Student Name
Virtual Environments and Computer Graphics
Chương 1: CÁC PHƯƠNG THỨC GIAO DỊCH TRÊN THỊ TRƯỜNG THẾ GIỚI
THỰC TIỄN KINH DOANH TRONG CỘNG ĐỒNG KINH TẾ ASEAN –
D. Phát triển thương hiệu
NHỮNG VẤN ĐỀ NỔI BẬT CỦA NỀN KINH TẾ VIỆT NAM GIAI ĐOẠN
Điều trị chống huyết khối trong tai biến mạch máu não
BÖnh Parkinson PGS.TS.BS NGUYỄN TRỌNG HƯNG BỆNH VIỆN LÃO KHOA TRUNG ƯƠNG TRƯỜNG ĐẠI HỌC Y HÀ NỘI Bác Ninh 2013.
Nasal Cannula X particulate mask
Evolving Architecture for Beyond the Standard Model
HF NOISE FILTERS PERFORMANCE
Electronics for Pedestrians – Passive Components –
Parameterization of Tabulated BRDFs Ian Mallett (me), Cem Yuksel
L-Systems and Affine Transformations
CMSC423: Bioinformatic Algorithms, Databases and Tools
Some aspect concerning the LMDZ dynamical core and its use
Bayesian Confidence Limits and Intervals
实习总结 (Internship Summary)
Current State of Japanese Economy under Negative Interest Rate and Proposed Remedies Naoyuki Yoshino Dean Asian Development Bank Institute Professor Emeritus,
Front End Electronics for SOI Monolithic Pixel Sensor
Face Recognition Monday, February 1, 2016.
Solving Rubik's Cube By: Etai Nativ.
CS284 Paper Presentation Arpad Kovacs
انتقال حرارت 2 خانم خسرویار.
Summer Student Program First results
Theoretical Results on Neutrinos
HERMESでのHard Exclusive生成過程による 核子内クォーク全角運動量についての研究
Wavelet Coherence & Cross-Wavelet Transform
yaSpMV: Yet Another SpMV Framework on GPUs
Creating Synthetic Microdata for Higher Educational Use in Japan: Reproduction of Distribution Type based on the Descriptive Statistics Kiyomi Shirakawa.
MOCLA02 Design of a Compact L-­band Transverse Deflecting Cavity with Arbitrary Polarizations for the SACLA Injector Sep. 14th, 2015 H. Maesaka, T. Asaka,
Hui Wang†*, Canturk Isci‡, Lavanya Subramanian*,
Fuel cell development program for electric vehicle
Overview of TST-2 Experiment
Optomechanics with atoms
داده کاوی سئوالات نمونه
Inter-system biases estimation in multi-GNSS relative positioning with GPS and Galileo Cecile Deprez and Rene Warnant University of Liege, Belgium  
ლექცია 4 - ფული და ინფლაცია
10. predavanje Novac i financijski sustav
Wissenschaftliche Aussprache zur Dissertation
FLUORECENCE MICROSCOPY SUPERRESOLUTION BLINK MICROSCOPY ON THE BASIS OF ENGINEERED DARK STATES* *Christian Steinhauer, Carsten Forthmann, Jan Vogelsang,
Particle acceleration during the gamma-ray flares of the Crab Nebular
Interpretations of the Derivative Gottfried Wilhelm Leibniz
Advisor: Chiuyuan Chen Student: Shao-Chun Lin
Widow Rockfish Assessment
SiW-ECAL Beam Test 2015 Kick-Off meeting
On Robust Neighbor Discovery in Mobile Wireless Networks
Chapter 6 并发:死锁和饥饿 Operating Systems: Internals and Design Principles
You NEED your book!!! Frequency Distribution
Y V =0 a V =V0 x b b V =0 z
Fairness-oriented Scheduling Support for Multicore Systems
Climate-Energy-Policy Interaction
Hui Wang†*, Canturk Isci‡, Lavanya Subramanian*,
Ch48 Statistics by Chtan FYHSKulai
The ABCD matrix for parabolic reflectors and its application to astigmatism free four-mirror cavities.
Measure Twice and Cut Once: Robust Dynamic Voltage Scaling for FPGAs
Online Learning: An Introduction
Factor Based Index of Systemic Stress (FISS)
What is Chemistry? Chemistry is: the study of matter & the changes it undergoes Composition Structure Properties Energy changes.
THE BERRY PHASE OF A BOGOLIUBOV QUASIPARTICLE IN AN ABRIKOSOV VORTEX*
Quantum-classical transition in optical twin beams and experimental applications to quantum metrology Ivano Ruo-Berchera Frascati.
The Toroidal Sporadic Source: Understanding Temporal Variations
FW 3.4: More Circle Practice
ارائه یک روش حل مبتنی بر استراتژی های تکاملی گروه بندی برای حل مسئله بسته بندی اقلام در ظروف
Decision Procedures Christoph M. Wintersteiger 9/11/2017 3:14 PM
Limits on Anomalous WWγ and WWZ Couplings from DØ
Presentation transcript:

Lecture 4 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place.

Lecture 4 Block 1 Block 2 Block 3 Mole Balances Chapter 4 Lecture 4 Block 1 Mole Balances Size CSTRs and PFRs given –rA=f(X) Block 2 Rate Laws Reaction Orders Arrhenius Equation Block 3 Stoichiometry Stoichiometric Table Definitions of Concentration Calculate the Equilibrium Conversion, Xe

Reactor Mole Balances Summary Review Lecture 2 Reactor Mole Balances Summary in terms of conversion, X Reactor Differential Algebraic Integral CSTR PFR Batch X t PBR W

Review Lecture 2 Levenspiel Plots

Review Lecture 2 PFR

Reactors in Series Review Lecture 2 Only valid if there are no side streams

Review Lecture 2 Reactors in Series

Two steps to get Review Lecture 2 Step 1: Rate Law Step 2: Stoichiometry Step 3: Combine to get

Building Block 2: Rate Laws Review Lecture 3 Building Block 2: Rate Laws Power Law Model: A reactor follows an elementary rate law if the reaction orders just happens to agree with the stoichiometric coefficients for the reaction as written. e.g. If the above reaction follows an elementary rate law 2nd order in A, 1st order in B, overall third order

Arrhenius Equation Review Lecture 3 k T E = Activation energy (cal/mol) R = Gas constant (cal/mol*K) T = Temperature (K) A = Frequency factor (same units as rate constant k) (units of A, and k, depend on overall reaction order)

Reaction Engineering These topics build upon one another Review Lecture 3 Reaction Engineering Mole Balance Rate Laws Stoichiometry These topics build upon one another

Algorithm How to find Review Lecture 3 Step 1: Rate Law Step 2: Stoichiometry Step 3: Combine to get

Building Block 3: Stoichiometry Chapter 4 Building Block 3: Stoichiometry We shall set up Stoichiometry Tables using species A as our basis of calculation in the following reaction. We will use the stoichiometric tables to express the concentration as a function of conversion. We will combine Ci = f(X) with the appropriate rate law to obtain -rA = f(X). A is the limiting reactant.

Stoichiometry Let ΘB = NB0/NA0 Then: Chapter 4 Stoichiometry For every mole of A that reacts, b/a moles of B react. Therefore moles of B remaining: Let ΘB = NB0/NA0 Then:

Batch System - Stoichiometry Table Chapter 4 Batch System - Stoichiometry Table Species Symbol Initial Change Remaining A NA0 -NA0X NA=NA0(1-X) B NB0=NA0ΘB -b/aNA0X NB=NA0(ΘB-b/aX) C NC0=NA0ΘC +c/aNA0X NC=NA0(ΘC+c/aX) D ND0=NA0ΘD +d/aNA0X ND=NA0(ΘD+d/aX) Inert I NI0=NA0ΘI ---------- NI=NA0ΘI FT0 NT=NT0+δNA0X Where: and δ = change in total number of mol per mol A reacted

Stoichiometry Constant Volume Batch Chapter 4 Stoichiometry Constant Volume Batch Note: If the reaction occurs in the liquid phase or if a gas phase reaction occurs in a rigid (e.g. steel) batch reactor Then etc.

Stoichiometry Constant Volume Batch Chapter 4 Stoichiometry Constant Volume Batch Suppose Batch: Equimolar feed: Stoichiometric feed:

Stoichiometry Constant Volume Batch Chapter 4 Stoichiometry Constant Volume Batch If , then Constant Volume Batch and we have

Batch Reactor - Example Chapter 4 Batch Reactor - Example Calculate the equilibrium conversion for gas phase reaction, Xe . Consider the following elementary reaction with KC=20 dm3/mol and CA0=0.2 mol/dm3. Find Xe for both a batch reactor and a flow reactor.

Batch Reactor - Example Chapter 4 Batch Reactor - Example Calculate Xe Step 1: Step 2: rate law:

Batch Reactor - Example Chapter 4 Batch Reactor - Example Symbol Initial Change Remaining A NA0 -NA0X NA0(1-X) B ½ NA0X NA0 X/2 Totals: NT0=NA0 NT=NA0 -NA0 X/2 @ equilibrium: -rA=0

Batch Reactor - Example Chapter 4 Batch Reactor - Example Solution: At equilibrium Stoichiometry: Constant Volume: Batch Species Initial Change Remaining A NA0 -NA0X NA=NA0(1-X) B +NA0X/2 NB=NA0X/2 NT0=NA0 NT=NA0-NA0X/2

Batch Reactor - Example Chapter 4 Batch Reactor - Example

Flow System – Stoichiometry Table Chapter 4 Flow System – Stoichiometry Table Species Symbol Reactor Feed Change Reactor Effluent A FA0 -FA0X FA=FA0(1-X) B FB0=FA0ΘB -b/aFA0X FB=FA0(ΘB-b/aX) Where:

Flow System – Stoichiometry Table Chapter 4 Flow System – Stoichiometry Table Species Symbol Reactor Feed Change Reactor Effluent C FC0=FA0ΘC +c/aFA0X FC=FA0(ΘC+c/aX) D FD0=FA0ΘD +d/aFA0X FD=FA0(ΘD+d/aX) Inert I FI0=A0ΘI ---------- FI=FA0ΘI FT0 FT=FT0+δFA0X Where: and Concentration – Flow System

Flow System – Stoichiometry Table Chapter 4 Flow System – Stoichiometry Table Species Symbol Reactor Feed Change Reactor Effluent A FA0 -FA0X FA=FA0(1-X) B FB0=FA0ΘB -b/aFA0X FB=FA0(ΘB-b/aX) C FC0=FA0ΘC +c/aFA0X FC=FA0(ΘC+c/aX) D FD0=FA0ΘD +d/aFA0X FD=FA0(ΘD+d/aX) Inert I FI0=FA0ΘI ---------- FI=FA0ΘI FT0 FT=FT0+δFA0X Where: and Concentration – Flow System

Chapter 4 Stoichiometry Concentration Flow System: Liquid Phase Flow System: Flow Liquid Phase etc. We will consider CA and CB for gas phase reactions in the next lecture

Heat Effects Stoichiometry Rate Laws Mole Balance Isothermal Design Algorithm Heat Effects Isothermal Design Stoichiometry Rate Laws Mole Balance

End of Lecture 4