Presented by T. Suomijärvi

Slides:



Advertisements
Similar presentations
R&D for ECAL VFE technology prototype -Gerard Bohner -Jacques Lecoq -Samuel Manen LPC Clermond-Ferrand, Fr -Christophe de La Taille -Julien Fleury -Gisèle.
Advertisements

SKIROC New generation readout chip for ECAL M. Bouchel, J. Fleury, C. de La Taille, G. Martin-Chassard, L. Raux, IN2P3/LAL Orsay J. Lecoq, G. Bohner S.
18/05/2015 Calice meeting Prague Status Report on ADC LPC ILC Group.
1 Dr. Un-ki Yang Particle Physics Group or Shuster 5.15 Amplifiers and Feedback: 3.
TileCal Electronics A Status Report J. Pilcher 17-Sept-1998.
Large Area, High Speed Photo-detectors Readout Jean-Francois Genat + On behalf and with the help of Herve Grabas +, Samuel Meehan +, Eric Oberla +, Fukun.
1 H-Cal front-end ASIC Status LAL Orsay J. Fleury, C. de la Taille, G. Martin, L. Raux.
Ph. Farthouat CERN ELEC 2002 ADC 1 Analog to Digital Conversion  Introduction  Main characteristics –Resolution –Dynamic range –Bandwidth –Conversion.
Calorimeter upgrade meeting – CERN – October 5 th 2010 Analog FE ASIC: first prototype Upgrade of the front end electronics of the LHCb calorimeter E.
L. Gallin-Martel, D. Dzahini, F. Rarbi, O. Rossetto
L.Royer– Calice DESY – July 2010 Laurent ROYER, Samuel MANEN, Pascal GAY LPC Clermont-Ferrand R&D LPC Clermont-Fd dedicated to the.
Second generation Front-end chip for H-Cal SiPM readout : SPIROC DESY Hamburg – le 13 février 2007 M. Bouchel, F. Dulucq, J. Fleury, C. de La Taille, G.
Readout ASIC for SiPM detector of the CTA new generation camera (ALPS) N.Fouque, R. Hermel, F. Mehrez, Sylvie Rosier-Lees LAPP (Laboratoire d’Annecy le.
S.Manen– IEEE Dresden – Oct A custom 12-bit cyclic ADC for the electromagnetic calorimeter of the International Linear Collider Samuel.
K.C.RAVINDRAN,GRAPES-3 EXPERIMENT,OOTY 1 Development of fast electronics for the GRAPES-3 experiment at Ooty K.C. RAVINDRAN On Behalf of GRAPES-3 Collaboration.
QIE10 Issues Tom Zimmerman Fermilab Oct. 28,
Large area photodetection for Water Cerenkov detectors PMm 2 proposal: Front End Electronics MAROC ASIC Pierre BARRILLON, Sylvie BLIN, Jean-Eric CAMPAGNE,
Hold signal Variable Gain Preamp. Variable Slow Shaper S&H Bipolar Fast Shaper 64Trigger outputs Gain correction (6 bits/channel) discriminator threshold.
L.ROYER – TWEPP Lisbon – Sept-Oct A Dedicated Front-End ASIC for the ATLAS TileCal Upgrade L.Royer, S.Manen, N.Pillet, H.Chanal, R.Vandaële,
Vendredi 18 décembre 2015 Status report on SPIROC chips Michel Bouchel, Stéphane Callier, Frédéric Dulucq, Julien Fleury, Gisèle Martin- Chassard, Christophe.
L.Royer– Calice LLR – Feb Laurent Royer, J. Bonnard, S. Manen, P. Gay LPC Clermont-Ferrand R&D pole MicRhAu dedicated to High.
L.Royer – Calice Manchester – Sept A 12-bit cyclic ADC dedicated to the VFE electronics of Si-W Ecal Laurent ROYER, Samuel MANEN LPC Clermont-Ferrand.
LHCb Calorimeter Upgrade Meeting – 10th September 2012 – CERN LHCb Calorimeter Upgrade Electronics: ASIC solution status E. Picatoste, D. Gascon Universitat.
DOM MB Test Results at LBNL Main Board Readiness Status Review LBNL, July 2003 Azriel Goldschmidt.
SKIROC ADC measurements and cyclic ADC LPC Clermont-Ferrand Laurent ROYER, Samuel MANEN Calice/Eudet electronic meeting Orsay June.
S. Bota – Calorimeter Electronics overview - July 2002 Status of SPD electronics Very Front End Review of ASIC runs What’s new: RUN 4 and 5 Next Actions.
M. TWEPP071 MAPS read-out electronics for Vertex Detectors (ILC) A low power and low signal 4 bit 50 MS/s double sampling pipelined ADC M.
VMM Update Front End ASIC for the ATLAS Muon Upgrade V. Polychronakos BNL RD51 - V. Polychronakos, BNL10/15/131.
PArISROC Photomultiplier Array Integrated in Sige Read Out Chip Selma Conforti Frédéric Dulucq Christophe de La Taille Gisèle Martin-Chassard Wei
Front-end Electronic for the CALICE ECAL Physic Prototype Christophe de La Taille Julien Fleury Gisèle Martin-Chassard Front-end Electronic for the CALICE.
Tuesday, 20 May 2003OPERA Collaboration Meeting - Gran Sasso1 Status of front-end electronics for the OPERA Target Tracker LAL Orsay S.BONDIL, J. BOUCROT,
Front End. Charge pre-amp and detector Voltage regulator. TOP side. Detector linear voltage regulator BOTTOM side. Charge pre-amp.
Status of front-end electronics for the OPERA Target Tracker
STATUS OF SPIROC measurement
A 12-bit low-power ADC for SKIROC
V. Tocut, LAL/IN2P3 Orsay H. Lebbolo LPNHE/IN2P3 Paris
Jinfan Chang Experimental Physics Center , IHEP Feb 18 , 2011
A General Purpose Charge Readout Chip for TPC Applications
ECAL front-end electronic status
ASIC PMm2 Pierre BARRILLON, Sylvie BLIN, Selma CONFORTI,
on behalf of the AGH and UJ PANDA groups
CTA-LST meeting February 2015
Analog FE circuitry simulation
DHCAL TECH PROTO READOUT PROPOSAL
Timing and fast analog memories in Saclay
Jan Soldat, Heidelberg University for the DSSC ASIC design groups
High speed pipelined ADC + Multiplexer for CALICE
LHAASO Electronics developments
96-channel, 10-bit, 20 MSPS ADC board with Gb Ethernet optical output
R&D activity dedicated to the VFE of the Si-W Ecal
KRB proposal (Read Board of Kyiv group)
Hugo França-Santos - CERN
R&D on large photodetectors and readout electronics FJPPL KEK/Orsay JE Campagne, S. Conforti, F. Dulucq, C. de La Taille, G. Martin-Chassard,, A.
VMM Update Front End ASIC for the ATLAS Muon Upgrade
Ongoing R&D in Orsay/Saclay on ps time measurement: a USB-powered 2-channel 3.2GS/s 12-bit digitizer D.Breton (LAL Orsay), E.Delagnes (CEA/IRFU) Séminaire.
TDC at OMEGA I will talk about SPACIROC asic
CALICE COLLABORATION LPC Clermont LAL Orsay Samuel MANEN Julien FLEURY
EUDET – LPC- Clermont VFE Electronics
LHCb calorimeter main features
SPIROC Status : Last developments for SPIROC
Christophe de La Taille * Gisèle Martin-Chassard *
Choix d’une architecture de CAN adaptée au MAPS
BESIII EMC electronics
The ATLAS LAr. Calibration board K. Jakobs, U. Schaefer, D. Schroff
ASPID (Application of Silicon Photomultipliers to Imaging Detectors)
Readout Electronics for Pixel Sensors
Front-end Electronics for the LHCb Preshower Rémi CORNAT, Gérard BOHNER, Olivier DESCHAMPS, Jacques LECOQ, Pascal PERRET LPC Clermont-Ferrand.
Ongoing R&D in Orsay/Saclay on ps time measurement: status of the USB-powered 2-channel 3.2GS/s 12-bit digitizer D.Breton & J.Maalmi (LAL Orsay), E.Delagnes.
2007 TWEPP – Prague – September 3-7, 2007
Readout Electronics for Pixel Sensors
Presentation transcript:

Front End Electronics for the Auger Surface Detector Photomultiplier Tubes Presented by T. Suomijärvi B. Genolini, L. Raux, V. Tocut , R. Chiche, C. de La Taille, J. Pouthas IPN & LAL @ Orsay (IN2P3-CNRS, Université Paris-Sud, France)

Possible sketch for the Auger Surface Detectors F.E. Electronics for Photomultipliers Possible sketch for the Auger Surface Detectors Large dynamic range - up to 7 V Input noise = 50 µV RMS (over 50 MHz) up to 17 bits (16 currently because of the gains) High voltage 10 FADC + serialization 1 P M Base 0.1 Calibration 16 bits: we would prefer to keep to this value to reduce the maximum amplitude (safer for the electronics and to reduce the input noise –to be validated). Also because of the overlap and the value of the "gain 10" amplifier that we are currently redesigning Reduce the number of cables High voltage and signal through the same cable 75 Ohm impedance

Calibration principle (current studies) F.E. Electronics for Photomultipliers Calibration principle (current studies) 10 1 P M Base 0.1 Amplitude control DAC Trigger Adapt ATLAS calorimeter calibration: Inject muon-like pulses (i.e. with a decay) Control the amplitude with the DAC: test linearity and gains

F.E. Electronics for Photomultipliers April 2004 submission Presented at the Conference on Photodetection (Beaune 2005), To be published in NIM + - VPolar OTA , biased with an OTA (transimpedance amplifier) Design based on CFOA (current feedback amplifiers) + -  1  10 CFOA buffers Pure CMOS: does not use bipolar transistor (much less expensive for prototyping) Calibration not implemented this time Pure 0.35 µm CMOS (AMS) - Size: 1,200 µm x 1,200 µm Estimated power absorption: less than 2 mW (<400 µA on 5 V)

F.E. Electronics for Photomultipliers Measurements (Sept. – Oct. 2004) Gain 0.1 Gain 1 Gain 10 Linearity limit Input: >5 V Output: > 1 V Gain 0.2 Linearity limit: Input: 1.3 V Output: 1.7 V Gain 1.3 Linearity limit: Input: 230 mV Output: 1.4 V Gain 6.2 Base line stability: highly dependent on the base design (to be optimized) Noise RMS: 200 µV Noise RMS: 200 µV Noise RMS: 1200 µV Bandwidth = 500 MHz Linearity better than 1 % over the measured range

F.E. Electronics for Photomultipliers Measurement on the Orsay tank (Oct. 2004) Matacq FADC 12 bits, 2 GSPS LAL-DAPNIA CH1 Passive splitter G0.1 CH2 G1 CH3 G10 CH4 MATACQ: input range = -0.5 V to 0.5 V. Adjustable sampling time: 1 or 2 GSPS. Fixed length: 2560 points.

F.E. Electronics for Photomultipliers Measurement: Orsay tank response Anode (CH1) G0.1 (CH2) G 1 (CH3) G10 (CH4) PMT gain: around 3106 (to measure greater pulses) Curves rescaled to the input Saturation level on gain 1 200 ns Signals: 11, Small amplitude (100 mV input) Large amplitude (6V input) Large width Conservation of the signal shape Fast recovery

F.E. Electronics for Photomultipliers Integrated digitization 10 Digitization + serialization 1 0.1 Calibration Sampling rate: move to 100 MSPS Output: change to serial Differential Electromagnetic compatibility Power (consumption from di/dt  EMC) Serial Reliability (less pins)

F.E. Electronics for Photomultipliers … Vref Flash ADC MSB conversion Fast ADC Presented at the IEEE Conference (Puerto Rico 2005), To be published in IEEE-TNS x32 6-bit DAC + - … Vref Flash ADC LSB conversion Vin Track & Hold Expected Performances: Resolution: 10 bits effective Speed: 100 MSample/s Consumption: ~100 mW (3.3 V)

F.E. Electronics for Photomultipliers Requirements Implement an integrated calibration system (allow a few external components) Implement a method to match the cable impedance (trimming at production) Adjust the amplifier gains / increase the bandwidth Input impedance to 75 Ohms: Better current readout high voltage coaxial cable Analog front-end: Discriminators: 3 levels, stable levels over the temperature range (-10 to 50°C) 5 ns accuracy Sampling time: 100 MSPS (adapted shaping) Pedestal stability over the temperature range (-10 to 50°C) ADC: Automatic switch mode / dedicated switch mode for calibration 10 bits

F.E. Electronics for Photomultipliers Our R&D program November 2003 Beginning of simulations 3 Gains (0.1 ; 1 ; 10) & Calibration May 2004 -October 2004 Asic submission + tests October 2004 Start Front-end simulations with extended functions December, 6 2004 Submission of a 100 MSPS ADC chip (IN2P3 building block) + test board design (prototype of a 10 bit ADC) August 2005 ADC test September 2005 Second ADC submission Then…Tests… Simulations… and Further submissions in 2006 (front-end, maybe FADC)