Nucleic Acids Information storage 2006-2007.

Slides:



Advertisements
Similar presentations
Nucleic Acids Information storage proteins DNA Nucleic Acids Function: – genetic material stores information – genes – blueprint for building proteins.
Advertisements

AP Biology Nucleic acids AP Biology Nucleic Acids Information storage.
Nucleic acids Nucleic Acids Information storage.
AP Biology HELIXHELIX AP Biology Nucleic Acids Information storage.
AP Biology Nucleic acids AP Biology Nucleic Acids.
AP Biology Nucleic acids AP Biology Nucleic Acids Information storage.
Nucleic Acids Information storage proteins DNA Nucleic Acids Function: – genetic material stores information – genes – blueprint for building proteins.
AP Biology Nucleic acids AP Biology Nucleic Acids Information storage.
Proteins.
AP Biology Nucleic Acids Information storage.
AP Biology AP Biology John D. O’Bryant School of Mathematics and Science September 17, 2012.
AP Biology Nucleic Acids Information storage Energy Transfer.
AP Biology The Building Blocks  3.3 Nucleic Acids.
AP Biology Nucleic acids AP Biology Nucleic Acids Information storage.
MCC BP Based on work by K. Foglia
HELIXHELIX.
AP Biology Nucleic Acids Nucleic Acids Function: – store & transmit hereditary information polymers = – RNA (ribonucleic acid) – DNA (deoxyribonucleic.
W-H Based on work by K. Foglia. AP Biology Chapter 5. Macromolecules: Nucleic Acids.
Unit 2: Molecular Genetics Bi 1d: Central Dogma Bi 5a: DNA, RNA, protein structure and function Bi 5b: Base pairing rules.
AP Biology. Nucleic Acids  Function:  store & transmit hereditary information  Examples:  RNA (ribonucleic acid)  DNA (deoxyribonucleic acid)  Structure:
AP Biology Nucleic acids AP Biology Nucleic Acids Information storage.
AP Biology Nucleic Acids AP Biology Nucleic acids.
AP Biology Nucleic acids AP Biology Nucleic Acids Information storage.
AP Biology Nucleic Acids Information storage & Energy transfer.
AP Biology. Chapter 5. Macromolecules: Nucleic Acids.
Information molecules
Nucleic acids
Nucleic acids
Nucleic Acids Information storage
AP Biology.
HELIXHELIX.
Nucleic Acids Information storage.
Nucleic acids
Information molecules
Nucleic Acids Information storage.
Nucleic Acids Information storage
HELIXHELIX.
HELIXHELIX.
Nucleic acids
Chapter 5.5 Nucleic Acids.
Nucleic Acids Function: Examples: Structure:
Information molecules
Information molecules
The structure of Nucleic Acids
Nucleic Acids.
Nucleic Acids Information storage.
Nucleic Acids Information storage.
Nucleic Acids Information storage
Nucleic Acids Information storage.
Nucleic acids
Nucleic acids
Nucleic acids
Nucleic acids
Nucleic acids
Chapter 5.5 Nucleic Acids.
Macromolecule Review.
Chapter 5. Macromolecules: Nucleic Acids
Nucleic acids
Nucleic acids
Nucleic acids
Nucleic acids
Nucleic Acids Information storage
Nucleic acids.
Nucleic acids
Nucleic acids
Nucleic acids
Information molecules
Nucleic Acids Information storage
A T C G Isn’t this a great illustration!?.
Canned food notes… -We delivered cans last night to a food pantry near NFHS. We donated 3 rolling “trash” bins full of cans, and doubled the existing.
Presentation transcript:

Nucleic Acids Information storage 2006-2007

Nucleotides 3 parts nitrogen base (C-N ring) pentose sugar (5C) ribose in RNA deoxyribose in DNA phosphate (PO4) group Nitrogen base I’m the A,T,C,G or U part! Are nucleic acids charged molecules? DNA & RNA are negatively charged: Don’t cross membranes. Contain DNA within nucleus Need help transporting mRNA across nuclear envelope. Also use this property in gel electrophoresis.

Types of nucleotides 2 types of nucleotides different nitrogen bases Purine = AG Pure silver! 2 types of nucleotides different nitrogen bases purines double ring N base adenine (A) guanine (G) pyrimidines single ring N base cytosine (C) thymine (T) uracil (U)

Building the polymer

Dangling bases? Why is this important? Nucleic polymer Backbone sugar to PO4 bond phosphodiester bond new base added to sugar of previous base polymer grows in one direction N bases hang off the sugar-phosphate backbone Dangling bases? Why is this important?

Pairing of nucleotides Nucleotides bond between DNA strands H bonds purine :: pyrimidine A :: T 2 H bonds G :: C 3 H bonds The 2 strands are complementary. One becomes the template of the other & each can be a template to recreate the whole molecule. Matching bases? Why is this important?

H bonds? Why is this important? DNA molecule Double helix H bonds between bases join the 2 strands A :: T C :: G H bonds = biology’s weak bond • easy to unzip double helix for replication and then re-zip for storage • easy to unzip to “read” gene and then re-zip for storage H bonds? Why is this important?

Nucleic Acids Function: genetic material stores information genes blueprint for building proteins DNA  RNA  proteins transfers information blueprint for new cells blueprint for next generation DNA proteins

Nucleic Acids Examples: Structure: RNA (ribonucleic acid) single helix DNA (deoxyribonucleic acid) double helix Structure: monomers = nucleotides DNA RNA

Matching halves? Why is this a good system? Copying DNA Replication 2 strands of DNA helix are complementary have one, can build other have one, can rebuild the whole when cells divide, they must duplicate DNA exactly for the new “daughter” cells Why is this a good system? Matching halves? Why is this a good system?

When does a cell copy DNA? When in the life of a cell does DNA have to be copied? cell reproduction mitosis gamete production meiosis when cells divide, they must duplicate DNA exactly for the new “daughter” cells Why is this a good system?

DNA replication “It has not escaped our notice that the specific pairing we have postulated immediately suggests a possible copying mechanism for the genetic material.” James Watson Francis Crick 1953 The greatest understatement in biology!

Interesting note… Ratio of A-T::G-C affects stability of DNA molecule 2 H bonds vs. 3 H bonds biotech procedures more G-C = need higher T° to separate strands high T° organisms many G-C parasites many A-T (don’t know why) At the foundation of biology is chemistry!!

HELIXHELIX

Macromolecule Review 2006-2007

Proteins Structure / monomer Function Examples amino acids levels of structure Function enzymes u defense transport u structure signals u receptors Examples digestive enzymes, membrane channels, insulin hormone, actin peptide bond

Lipids Structure / building block Function Examples glycerol, fatty acid, cholesterol, H-C chains Function energy storage membranes hormones Examples fat, phospholipids, steroids ester bond (in a fat)

Carbohydrates Structure / monomer Function Examples monosaccharide energy raw materials energy storage structural compounds Examples glucose, starch, cellulose, glycogen glycosidic bond

Nucleic acids Structure / monomer Function Examples nucleotide information storage & transfer Examples DNA, RNA phosphodiester bond