CSV881: Low-Power Design Power Dissipation in CMOS Circuits

Slides:



Advertisements
Similar presentations
Fall 06, Sep 19, 21 ELEC / Lecture 6 1 ELEC / (Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic.
Advertisements

Copyright Agrawal & Srivaths, 2007 Low-Power Design and Test, Lecture 2 1 Low-Power Design and Test Dynamic and Static Power in CMOS Vishwani D. Agrawal.
8/29/06 and 8/31/06 ELEC / Lecture 3 1 ELEC / (Fall 2006) Low-Power Design of Electronic Circuits (ELEC 5970/6970) Low Voltage.
Copyright Agrawal, 2007 ELEC5270/6270 Spring 09, Lecture 4 1 ELEC / Spring 2009 Low-Power Design of Electronic Circuits Power Dissipation.
9/01/05ELEC / Lecture 41 ELEC / (Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.
8/22/06 and 8/24/06 ELEC / Lecture 2 1 ELEC / (Fall 2006) Low-Power Design of Electronic Circuits (ELEC 5270/6270) Power.
Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 5 1 ELEC 5270/6270 Fall 2007 Low-Power Design of Electronic Circuits Low Voltage Low-Power Devices Vishwani.
8/30/05ELEC / Lecture 31 ELEC / (Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Lecture 13: Power Dissipation Prof. Sherief Reda Division of Engineering, Brown.
8/23-25/05ELEC / Lecture 21 ELEC / (Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.
Fall 06, Sep 14 ELEC / Lecture 5 1 ELEC / (Fall 2006) Low-Power Design of Electronic Circuits (Formerly ELEC / )
Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 11 1 ELEC 5270/6270 Fall 2007 Low-Power Design of Electronic Circuits Adiabatic Logic Vishwani D. Agrawal.
MOS Capacitors MOS capacitors are the basic building blocks of CMOS transistors MOS capacitors distill the basic physics of MOS transistors MOS capacitors.
1 The Physical Structure (NMOS) Field Oxide SiO2 Gate oxide Field Oxide n+ Al SiO2 Polysilicon Gate channel L P Substrate D S L W (D) (S) Metal n+ (G)
Introduction to FinFet
1 The Physical Structure (NMOS) Field Oxide SiO2 Gate oxide Field Oxide n+ Al SiO2 Polysilicon Gate channel L P Substrate D S L W (D) (S) Metal n+ (G)
HO #3: ELEN Review MOS TransistorsPage 1S. Saha Long Channel MOS Transistors The theory developed for MOS capacitor (HO #2) can be directly extended.
ELEC Digital Logic Circuits Fall 2015 Delay and Power Vishwani D. Agrawal James J. Danaher Professor Department of Electrical and Computer Engineering.
ELEC Digital Logic Circuits Fall 2014 Delay and Power Vishwani D. Agrawal James J. Danaher Professor Department of Electrical and Computer Engineering.
Copyright Agrawal 2007ELEC / Spr 2015 Lecture 2 Jan ELEC / Spring 2015 Low-Power Design of Electronic Circuits Power.
LOW POWER DESIGN METHODS
Damu, 2008EGE535 Fall 08, Lecture 51 EGE535 Low Power VLSI Design Lecture #5 & 6 CMOS Inverter.
The Devices: MOS Transistor
UNIT II : BASIC ELECTRICAL PROPERTIES
Chapter 6 The Field Effect Transistor
Smruti R. Sarangi IIT Delhi
ELEC 5270/6270 Spring 2013 Low-Power Design of Electronic Circuits Pass Transistor Logic: A Low Power Logic Family Vishwani D. Agrawal James J. Danaher.
CS203 – Advanced Computer Architecture
Chapter 2 MOS Transistors.
MOS Field-Effect Transistors (MOSFETs)
Recall Last Lecture Common collector Voltage gain and Current gain
The Inverter EE4271 VLSI Design Professor Shiyan Hu Office: EERC 518
DMT 241 – Introduction to IC Layout
VLSI design Short channel Effects in Deep Submicron CMOS
LOW POWER DESIGN METHODS V.ANANDI ASST.PROF,E&C MSRIT,BANGALORE.
Lecture 21 OUTLINE The MOSFET (cont’d) P-channel MOSFET
VLSI Design MOSFET Scaling and CMOS Latch Up
Downsizing Semiconductor Device (MOSFET)
EE141 Chapter 3 VLSI Design The Devices March 28, 2003.
ELEC 5270/6270 Spring 2013 Low-Power Design of Electronic Circuits Pseudo-nMOS, Dynamic CMOS and Domino CMOS Logic Vishwani D. Agrawal James J. Danaher.
Day 16: September 15, 2010 Energy and Power
Low Power Design in VLSI
Vishwani D. Agrawal James J. Danaher Professor
Lecture 19 OUTLINE The MOSFET: Structure and operation
ELEC 5270/6270 Spring 2015 Low-Power Design of Electronic Circuits Pseudo-nMOS, Dynamic CMOS and Domino CMOS Logic Vishwani D. Agrawal James J. Danaher.
Notes on Diodes 1. Diode saturation current:  
Week 9a OUTLINE MOSFET ID vs. VGS characteristic
332:479 Concepts in VLSI Design Lecture 24 Power Estimation
CSV881: Low-Power Design Multicore Design for Low Power
Downsizing Semiconductor Device (MOSFET)
The Physical Structure (NMOS)
Prof. Hsien-Hsin Sean Lee
Vishwani D. Agrawal James J. Danaher Professor
ELEC 5270/6270 Spring 2011 Low-Power Design of Electronic Circuits Pass Transistor Logic: A Low Power Logic Family Vishwani D. Agrawal James J. Danaher.
Lecture 21 OUTLINE The MOSFET (cont’d) P-channel MOSFET
Lecture 21 OUTLINE The MOSFET (cont’d) P-channel MOSFET
Chapter 9: Short channel effects and
Week 9a OUTLINE MOSFET ID vs. VGS characteristic
The Inverter EE4271 VLSI Design Dr. Shiyan Hu Office: EERC 731
Lecture 21 OUTLINE The MOSFET (cont’d) P-channel MOSFET
Lecture #17 (cont’d from #16)
Lecture 7: Power.
EXAMPLE 7.1 BJECTIVE Determine the total bias current on an IC due to subthreshold current. Assume there are 107 n-channel transistors on a single chip,
Power and Heat Power Power dissipation in CMOS logic arises from the following sources: Dynamic power due to switching current from charging and discharging.
Lecture #15 OUTLINE Diode analysis and applications continued
Lecture 7: Power.
Lecture #16 OUTLINE MOSFET ID vs. VGS characteristic
Dr. Hari Kishore Kakarla ECE
Chapter 4 Field-Effect Transistors
ELEC 5270/6270 Spring 2009 Low-Power Design of Electronic Circuits Pseudo-nMOS, Dynamic CMOS and Domino CMOS Logic Vishwani D. Agrawal James J. Danaher.
Presentation transcript:

CSV881: Low-Power Design Power Dissipation in CMOS Circuits Vishwani D. Agrawal James J. Danaher Professor Dept. of Electrical and Computer Engineering Auburn University, Auburn, AL 36849 vagrawal@eng.auburn.edu http://www.eng.auburn.edu/~vagrawal Copyright Agrawal, 2011 Lectures 3, 4: CMOS Circuits

nMOS Logic (Inverters) For logic 1 input, continuous static power is dissipated. Saturated-load nMOS Pseudo-nMOS R. C. Jaeger and T. N. Blalock, Microelctronic Circuit Design, Third Edition, McGraw-Hill, 2006, Chapter 6. Copyright Agrawal, 2011 Lectures 3, 4: CMOS Circuits

Lectures 3, 4: CMOS Circuits CMOS Logic (Inverter) VDD No current flows from power supply! Where is power consumed? GND F. M. Wanlass and C. T. Sah, “Nanowatt Logic using Field-Effect Metal-Oxide-Semiconductor Triodes,” IEEE International Solid-State Circuits Conference Digest, vol. IV, February 1963, pp. 32-33. Copyright Agrawal, 2011 Lectures 3, 4: CMOS Circuits

Lectures 3, 4: CMOS Circuits Components of Power Dynamic Signal transitions Logic activity Glitches Short-circuit (small) Static Leakage Ptotal = Pdyn + Pstat = Ptran + Psc + Pstat Copyright Agrawal, 2011 Lectures 3, 4: CMOS Circuits

Power of a Transition: Ptran V = VDD R = Ron i(t) vi (t) v(t) Large resistance C = CL Ground C = Total load capacitance for gate; includes transistor capacitances of driving gate + routing capacitance + transistor capacitances of driven gates; obtained by layout analysis. Copyright Agrawal, 2011 Lectures 3, 4: CMOS Circuits 2

Charging of a Capacitor v(t) i(t) C V Charge on capacitor, q(t) = C v(t) Current, i(t) = dq(t)/dt = C dv(t)/dt Copyright Agrawal, 2011 Lectures 3, 4: CMOS Circuits

Lectures 3, 4: CMOS Circuits i(t) = C dv(t)/dt = [V – v(t)] /R dv(t) V – v(t) ─── = ───── dt RC dv(t) dt ∫ ───── = ∫ ──── V – v(t) RC – t ln [V – v(t)] = ── + A RC Initial condition, t = 0, v(t) = 0 → A = ln V – t v(t) = V [1 – exp(───)] RC Copyright Agrawal, 2011 Lectures 3, 4: CMOS Circuits

Lectures 3, 4: CMOS Circuits v(t) = V [1 – exp( ── )] RC dv(t) V – t i(t) = C ─── = ── exp( ── ) dt R RC Copyright Agrawal, 2011 Lectures 3, 4: CMOS Circuits

Total Energy Per Charging Transition from Power Supply ∞ ∞ V2 – t Etrans = ∫ V i(t) dt = ∫ ── exp( ── ) dt 0 0 R RC = CV2 Copyright Agrawal, 2011 Lectures 3, 4: CMOS Circuits

Energy Dissipated per Transition in Resistance ∞ V2 ∞ – 2t R ∫ i2(t) dt = R ── ∫ exp( ── ) dt 0 R2 0 RC 1 = ─ CV2 2 Copyright Agrawal, 2011 Lectures 3, 4: CMOS Circuits

Energy Stored in Charged Capacitor ∞ ∞ – t V – t ∫ v(t) i(t) dt = ∫ V [1-exp( ── )] ─ exp( ── ) dt 0 0 RC R RC 1 = ─ CV2 2 Copyright Agrawal, 2011 Lectures 3, 4: CMOS Circuits

Lectures 3, 4: CMOS Circuits Transition Power Gate output rising transition Energy dissipated in pMOS transistor = CV2/2 Energy stored in capacitor = CV2/2 Gate output falling transition Energy dissipated in nMOS transistor = CV2/2 Energy dissipated per transition = CV2/2 Power dissipation: Ptrans = Etrans α fck = α fck CV2/2 α = activity factor fck = clock frequency Copyright Agrawal, 2011 Lectures 3, 4: CMOS Circuits

Lectures 3, 4: CMOS Circuits Components of Power Dynamic Signal transitions Logic activity Glitches Short-circuit Static Leakage GLITCH Delay=2 2 Delay =1 1 3 Ptotal = Pdyn + Pstat = Ptran + Psc + Pstat Copyright Agrawal, 2011 Lectures 3, 4: CMOS Circuits

Short Circuit Power of a Transition: Psc VDD isc(t) vi (t) vo(t) CL Ground Copyright Agrawal, 2011 Lectures 3, 4: CMOS Circuits 2

Short Circuit Current, isc (t) VDD VDD - VTp Vi (t) n-transistor cuts-off Vo(t) Volt VTn p-transistor starts conducting Iscmaxf isc(t) Isc Time (ns) tB tE 1 Copyright Agrawal, 2011 Lectures 3, 4: CMOS Circuits

Peak Short Circuit Current Increases with the size (or gain, β) of transistors Decreases with load capacitance, CL Largest when CL = 0 Reference: M. A. Ortega and J. Figueras, “Short Circuit Power Modeling in Submicron CMOS,” PATMOS ’96, Aug. 1996, pp. 147-166. Copyright Agrawal, 2011 Lectures 3, 4: CMOS Circuits

Short-Circuit Energy per Transition Escf = ∫tBtE VDD isc(t)dt = (tE – tB) Iscmaxf VDD / 2 Escf = tf (VDD - |VTp| - VTn) Iscmaxf / 2 Escr = tr (VDD - |VTp| - VTn) Iscmaxr / 2 Escf = Escr = 0, when VDD = |VTp| + VTn Copyright Agrawal, 2011 Lectures 3, 4: CMOS Circuits

Lectures 3, 4: CMOS Circuits Short-Circuit Power Increases with rise and fall times of input. Decreases for larger output load capacitance; large capacitor takes most of the current. Small, about 5-10% of dynamic power; momentary shorting of supply and ground during opening and closing of transistor switches. Copyright Agrawal, 2011 Lectures 3, 4: CMOS Circuits

Short-Circuit Power Calculation Assume equal rise and fall times Model input-output capacitive coupling (Miller capacitance) Use a spice model for transistors T. Sakurai and A. Newton, “Alpha-power Law MOSFET model and Its Application to a CMOS Inverter,” IEEE J. Solid State Circuits, vol. 25, April 1990, pp. 584-594. Copyright Agrawal, 2011 Lectures 3, 4: CMOS Circuits

Lectures 3, 4: CMOS Circuits Short Circuit Power Psc = α fck Esc Copyright Agrawal, 2011 Lectures 3, 4: CMOS Circuits

Psc, Rise Time and Capacitance VDD VDD Ron ic(t)+isc(t) vi (t) vo(t) vo(t) CL tr tf R = large vo(t) ─── R↑ Ground Copyright Agrawal, 2011 Lectures 3, 4: CMOS Circuits

isc, Rise Time and Capacitance VDD[1 – exp (─────)] vo(t) R↓(t) C Isc(t) = ──── = ─────────────── R↑(t) R↑(t) Copyright Agrawal, 2011 Lectures 3, 4: CMOS Circuits

iscmax, Rise Time and Capacitance Small C Large C vo(t) vo(t) iscmax 1 ──── R↑(t) t tf Copyright Agrawal, 2011 Lectures 3, 4: CMOS Circuits

Psc, Rise Times, Capacitance For given input rise and fall times short circuit power decreases as output capacitance increases. Short circuit power increases with increase of input rise and fall times. Short circuit power is reduced if output rise and fall times are longer than the input rise and fall times. Copyright Agrawal, 2011 Lectures 3, 4: CMOS Circuits

Summary: Short-Circuit Power Short-circuit power is consumed by each transition (increases with input transition time). Reduction requires that gate output transition should not be faster than the input transition (faster gates can consume more short-circuit power). Increasing the output load capacitance reduces short-circuit power. Scaling down of supply voltage with respect to threshold voltages reduces short-circuit power; completely eliminated when VDD ≤ |Vtp| + Vtn . Copyright Agrawal, 2011 Lectures 3, 4: CMOS Circuits

Lectures 3, 4: CMOS Circuits Components of Power Dynamic Signal transitions Logic activity Glitches Short-circuit Static Leakage Copyright Agrawal, 2011 Lectures 3, 4: CMOS Circuits

Lectures 3, 4: CMOS Circuits Leakage Power VDD IG Ground Gate R Source Drain n+ n+ Isub IPT ID IGIDL Bulk Si (p) nMOS Transistor Copyright Agrawal, 2011 Lectures 3, 4: CMOS Circuits

Leakage Current Components Subthreshold conduction, Isub Reverse bias pn junction conduction, ID Gate induced drain leakage, IGIDL due to tunneling at the gate-drain overlap Drain source punchthrough, IPT due to short channel and high drain-source voltage Gate tunneling, IG through thin oxide; may become significant with scaling Copyright Agrawal, 2011 Lectures 3, 4: CMOS Circuits

Drain to Source Current IDS = μ0 Cox (W/L) Vt2 exp{(VGS –VTH ) / nVt } μ0: carrier surface mobility Cox: gate oxide capacitance per unit area L: channel length W: gate width Vt = kT/q: thermal voltage n: a technology parameter Copyright Agrawal, 2011 Lectures 3, 4: CMOS Circuits

IDS for Short Channel Device IDS= μ0 Cox(W/L)Vt2 exp{(VGS –VTH + ηVDS)/nVt} VDS = drain to source voltage η: a proportionality factor W. Nebel and J. Mermet (Editors), Low Power Design in Deep Submicron Electronics, Springer, 1997, Section 4.1 by J. Figueras, pp. 81-104 Copyright Agrawal, 2011 Lectures 3, 4: CMOS Circuits

Subthreshold Current, Isub Example: 90nm CMOS inverter L = 90nm, Wp = 495nm, Wn = 216nm Temperature 300K (room temperature) Input set to 0 volt Vthn = 0.291V, Vthp =0.209V at VDD = 1.2V (nominal) PTM (predictive technology model) Spice simulation for leakage current Copyright Agrawal, 2011 Lectures 3, 4: CMOS Circuits

Subthreshold Current, Isub Copyright Agrawal, 2011 Lectures 3, 4: CMOS Circuits

Subthreshold Current, Isub Copyright Agrawal, 2011 Lectures 3, 4: CMOS Circuits

Increased Subthreshold Leakage Scaled device Ic Log (Drain current) Isub VTH’ VTH Gate voltage Copyright Agrawal, 2011 Lectures 3, 4: CMOS Circuits

Summary: Leakage Power Leakage power as a fraction of the total power increases as clock frequency drops. Turning supply off in unused parts can save power. For a gate it is a small fraction of the total power; it can be significant for very large circuits. Scaling down features requires lowering the threshold voltage, which increases leakage power; roughly doubles with each shrinking. Multiple-threshold devices are used to reduce leakage power. Copyright Agrawal, 2011 Lectures 3, 4: CMOS Circuits

Lectures 3, 4: CMOS Circuits CMOS Gate Power v(t) V R = Ron i(t) vi (t) v(t) i(t) Large resistance C isc(t) isc(t) Ground Leakage current time Copyright Agrawal, 2011 Lectures 3, 4: CMOS Circuits 2

Lectures 3, 4: CMOS Circuits Technology Scaling Scaling down 0.7 micron by factors 2 and 4 leads to 0.35 and 0.17 micron technologies Constant electric field assumed Copyright Agrawal, 2011 Lectures 3, 4: CMOS Circuits

Constant Electric Field Scaling B. Davari, R. H. Dennard and G. G. Shahidi, “CMOS Scaling for High Performance and Low Power—The Next Ten Years,” Proc. IEEE, April 1995, pp. 595-606. Other forms of scaling are referred to as constant-voltage and quasi-constant-voltage. Copyright Agrawal, 2011 Lectures 3, 4: CMOS Circuits

Lectures 3, 4: CMOS Circuits Bulk nMOSFET Polysilicon Gate Drain Source W n+ n+ L p-type body (bulk) SiO2 Thickness = tox Copyright Agrawal, 2011 Lectures 3, 4: CMOS Circuits

Lectures 3, 4: CMOS Circuits Technology Scaling A scaling factor (S ) reduces device dimensions as 1/S. Successive generations of technology have used a scaling S = √2, doubling the number of transistors per unit area. This produced 0.25μ, 0.18μ, 0.13μ, 90nm and 65nm technologies, continuing on to 45nm, 32nm and 22nm. A 5% gate shrink (S = 1.05) is commonly applied to boost speed as the process matures. N. H. E. Weste and D. Harris, CMOS VLSI Design, Third Edition, Boston: Pearson Addison-Wesley, 2005, Section 4.9.1. Copyright Agrawal, 2011 Lectures 3, 4: CMOS Circuits

Constant Electric Field Scaling Device Parameter Scaling Length, L 1/S Width, W Gate oxide thickness, tox Supply voltage, VDD Threshold voltages, Vtn, Vtp Substrate doping, NA S Copyright Agrawal, 2011 Lectures 3, 4: CMOS Circuits

Constant Electric Field Scaling(Cont.) Device Characteristic Scaling β W / (L tox) S Current, Ids β (VDD – Vt ) 2 1/S Resistance, R VDD / Ids 1 Gate capacitance, C W L / tox Gate delay, τ RC Clock frequency, f 1/ τ Dynamic power per gate, P CV 2 f 1/S 2 Chip area, A Power density P/A Current density Ids /A Copyright Agrawal, 2011 Lectures 3, 4: CMOS Circuits

Problem: A Design Example A battery-operated 65nm digital CMOS device is found to consume equal amounts (P ) of dynamic power and leakage power. The short-circuit power is negligible. The energy consumed by a computing task, that takes T seconds, is 2PT. Compare two power reduction strategies for extending the battery life: Clock frequency is reduced to half, keeping all other parameters constant. Supply voltage is reduced to half. This slows the gates down and forces the clock frequency to be lowered to half of its original (full voltage) value. Assume that leakage current is reduced by a ratio 10/2 = 5 (see slides 32 and 33). Copyright Agrawal, 2011 Lectures 3, 4: CMOS Circuits

Solution: Strategy A. Clock Frequency Reduction Reducing the clock frequency will reduce dynamic power to P / 2, keep the static power the same as P, and double the execution time of the task. Energy consumption for the task will be, Energy = (P / 2 + P ) 2T = 3PT which is greater than the original 2PT. Copyright Agrawal, 2011 Lectures 3, 4: CMOS Circuits

Solution: Part B. Supply Voltage Reduction When the supply voltage and clock frequency are reduced to half their values, dynamic power is reduced to P / 8 and static power to P / 10. The time of task is doubled and the total energy consumption is, Energy = (P / 8 + P / 10) 2T = 9PT / 20 =0.45PT The voltage reduction strategy reduces energy consumption while a simple frequency reduction consumes more energy. Copyright Agrawal, 2011 Lectures 3, 4: CMOS Circuits

Comparing Strategies A and B Original A B Voltage V V/2 Clock Frequency F F/2 Task Duration T 2T Power 2P 1.5P 0.225P Energy 2PT 3PT 0.45PT Copyright Agrawal, 2011 Lectures 3, 4: CMOS Circuits