long term energy storage

Slides:



Advertisements
Similar presentations
Lipids: Fats & Oils.
Advertisements

Lipids long term energy storage concentrated energy.
Chapter 5 Macromolecules-Lipids Lipids Lipids are composed of C, H, O – long hydrocarbon chains (H-C) “Family groups” – fats – phospholipids – steroids.
long term energy storage
AP Biology Lipids energy storage AP Biology Lipids Lipids are composed of C, H, O long hydrocarbon chain 4 types of lipids fats phospholipids steroids.
AP Biology Lipids: Fats & Oils AP Biology Lipids long term energy storage concentrated energy.
AP Biology Lipids: Fats & Oils AP Biology Lipids ________________________.
AP Biology Lipids: Fats & Oils AP Biology Lipids energy storage.
AP Biology Lipids: Fats & Oils AP Biology Lipids  Lipids are composed of Carbon, Hydrogen, and small amts of Oxygen  long hydrocarbon chains (H-C)
AP Biology Lipids: Fats & Oils AP Biology Lipids long term energy storage concentrated energy.
AP Biology Lipids long term energy storage AP Biology Lipids  Lipids are composed of C, H, O  long hydrocarbon chains (H-C)  “Family groups”  1)
AP Biology Lipids: Fats & Oils AP Biology What is a Lipid? long term energy storage concentrated energy.
OH H H HO CH 2 OH H H H OH O Carbohydrates energy molecules.
Lipids long term energy storage concentrated energy.
FAT I mean “Lipids.” You know how I feel about fatty foods and I just got a bit excited Long term energy storage concentrated energy Structural (Cell.
Vocab review Monomer= generic name for a building block unit
Lipids: Fats & Oils Lipids long term energy storage concentrated energy.
AP Biology Lipids Oils Fats. AP Biology Lipids: Fats & Oils.
AP Biology Lipids: Fats & Oils AP Biology Lipids long term energy storage concentrated energy.
The Chemical Building Blocks
Lipids AP Biology.
AP Biology Lipids. AP Biology Lipids  Lipids are composed of C, H, O  long hydrocarbon chain  Diverse group  fats  phospholipids.
AP Biology Lipids: Fats & Oils AP Biology Lipids long term energy storage concentrated energy.
AP Biology Lipids Oils Fats. AP Biology Lipids: Fats & Oils.
AP Biology Lipids: Fats & Oils AP Biology Lipids long term energy storage concentrated energy.
Lipids.  Lipids are composed of C, H, O  long hydrocarbon chain  Diverse group  fats  phospholipids  steroids  Do not form polymers  big molecules.
AP Biology Lipids: Fats & Oils AP Biology Lipids long term energy storage concentrated energy.
Lipids: Fats & Oils Lipids long term energy storage concentrated energy.
AP Biology Adapted from: Kim Foglia at Explore Biology for Northeast Kings Biology Lipids.
Lipids energy storage
Lipids: Fats & Oils.
long term energy storage
Lipids: Fats & Oils.
Lipids energy storage
long term energy storage
Lipids!.
Lipids: Fats & Oils.
Lipids: Fats & Oils.
Lipids: Fats & Oils.
Lipids: Fats & Oils.
Lipids: Fats, Oils and Waxes
Lipids: Fats & Oils.
Lipids: Fats & Oils.
Lipids: Fats & Oils.
Lipids: Fats & Oils.
Lipids AP Biology
Lipids: Fats & Oils.
Lipids: Fats & Oils.
Chapter 5.3 Lipids: Fats & Oils.
Modified from Kim Foglia
Lipids AP Biology
Lipids: Fats & Oils.
Lipids: Fats & Oils.
Lipids: Fats & Oils.
Lipids: Fats & Oils.
long term energy storage
Lipids: Fats & Oils.
dehydration synthesis Fats Structure: fatty acid = long HC “tail” with carboxyl (COOH) group “head” enzyme Look at structure… What makes them hydrophobic?
Lipids: Fats & Oils.
Lipids: Fats & Oils.
Lipids.
Lipids: Fats & Oils.
Lipids: Fats & Oils.
Carbohydrates Carbohydrates are composed of C, H, O carbo - hydr - ate
Lipids: Fats & Oils.
Lipids: Fats & Oils.
Lipids: Fats & Oils.
Lipids: Fats & Oils.
Lipids: Fats & Oils.
Lipids: Fats & Oils.
Presentation transcript:

long term energy storage Lipids long term energy storage concentrated energy

Lipids Lipids are composed of C, H, O “Family groups” long hydrocarbon chains (H-C) “Family groups” fats phospholipids steroids Do not form polymers big molecules made of smaller subunits not a continuing chain Made of same elements as carbohydrates but very different structure/ proportions & therefore very different biological properties

dehydration synthesis Fats Structure: glycerol (3C alcohol) + fatty acid fatty acid = long HC “tail” with carboxyl (COOH) group “head” enzyme Look at structure… What makes them hydrophobic? Note functional group = carboxyl H2O dehydration synthesis

Building Fats Triacylglycerol 3 fatty acids linked to glycerol ester linkage = between OH & COOH hydroxyl carboxyl BIG FAT molecule!!

Dehydration synthesis H2O dehydration synthesis enzyme H2O Pulling the water out to free up the bond enzyme H2O enzyme H2O

Why do humans like fatty foods? Fats store energy Why do humans like fatty foods? Long HC chain polar or non-polar? hydrophilic or hydrophobic? Function: energy storage concentrated all H-C! 2x carbohydrates cushion organs insulates body think whale blubber! What happens when you add oil to water Why is there a lot of energy stored in fats? • big molecule • lots of bonds of stored energy So why are we attracted to eating fat? Think about our ancestors on the Serengeti Plain & during the Ice Age. Was eating fat an advantage?

Saturated fats All C bonded to H No C=C double bonds long, straight chain most animal fats solid at room temp. contributes to cardiovascular disease (atherosclerosis) = plaque deposits Mostly animal fats

Unsaturated fats C=C double bonds in the fatty acids plant & fish fats vegetable oils liquid at room temperature the kinks made by double bonded C prevent the molecules from packing tightly together Mostly plant lipids Think about “natural” peanut butter: Lots of unsaturated fats Oil separates out Companies want to make their product easier to use: Stop the oil from separating Keep oil solid at room temp. Hydrogenate it = chemically alter to saturate it Affect nutrition? mono-unsaturated? poly-unsaturated?

Saturated vs. unsaturated 

It’s just like a penguin… Phospholipids Structure: glycerol + 2 fatty acids + PO4 PO4 = negatively charged It’s just like a penguin… A head at one end & a tail at the other!

Phospholipids Hydrophobic or hydrophilic? fatty acid tails = PO4 head = split “personality” hydrophobic hydrophillic “attracted to water” Come here, No, go away! interaction with H2O is complex & very important! “repelled by water”

Phospholipids in water Hydrophilic heads “attracted” to H2O Hydrophobic tails “hide” from H2O can self-assemble into “bubbles” bubble = “micelle” can also form a phospholipid bilayer early evolutionary stage of cell? water bilayer water

Why is this important? Phospholipids create a barrier in water define outside vs. inside they make cell membranes! Tell them about soap!

Steroids Structure: 4 fused C rings + ?? different steroids created by attaching different functional groups to rings different structure creates different function examples: cholesterol, sex hormones cholesterol

Cholesterol Important cell component animal cell membranes precursor of all other steroids including vertebrate sex hormones high levels in blood may contribute to cardiovascular disease

Cholesterol Important component of cell membrane helps keep cell membranes fluid & flexible

From Cholesterol  Sex Hormones What a big difference a few atoms can make! Same C skeleton, different functional groups

Let’s build some Lipids!

Review Questions

Lipid molecule hydrolysis produces Glycerol and fatty acids Glycerol and water Water and amino acids Glucose and fatty acids Water and fatty acids

In phospholipids, at least one fatty acid chain is “kinked”, resulting in a bent structure. This phenomenon, which gives fluidity to cell membranes, is caused by Excess hydrogen atoms around the bond Hydrophobic interactions Multiple double bonds Sulfhydryl group interactions Multiple ionic bonds

The single structural unit common to all lipids is Fat Glycogen Cholesterol Glycerol Carbon