Scintillator HCAL readout

Slides:



Advertisements
Similar presentations
Jeudi 19 février 2009 Status of SPIROC chips Michel Bouchel, Stéphane Callier, Frédéric Dulucq, Julien Fleury, Gisèle Martin-Chassard, Christophe de La.
Advertisements

6 Mar 2002Readout electronics1 Back to the drawing board Paul Dauncey Imperial College Outline: Real system New VFE chip A simple system Some questions.
SKIROC New generation readout chip for ECAL M. Bouchel, J. Fleury, C. de La Taille, G. Martin-Chassard, L. Raux, IN2P3/LAL Orsay J. Lecoq, G. Bohner S.
28 August 2002Paul Dauncey1 Readout electronics for the CALICE ECAL and tile HCAL Paul Dauncey Imperial College, University of London, UK For the CALICE-UK.
ECAL electronics Guido Haefeli, Lausanne PEBS meeting 10.Jan
Mathias Reinecke CALICE meeting Argonne EUDET module – Electronics Integration Contents -Next prototype : architecture -HCAL Base Unit (HBU)
L.Royer– Calice DESY – July 2010 Laurent ROYER, Samuel MANEN, Pascal GAY LPC Clermont-Ferrand R&D LPC Clermont-Fd dedicated to the.
Reports from DESY Satoru Uozumi (Staying at DESY during Nov 11 – 25) Nov-21 GLDCAL Japan-Korea meeting.
Second generation Front-end chip for H-Cal SiPM readout : SPIROC DESY Hamburg – le 13 février 2007 M. Bouchel, F. Dulucq, J. Fleury, C. de La Taille, G.
CALICE Meeting DESY ITEP&MEPhI status report on tile production and R&D activities Michael Danilov ITEP.
MR (7/7/05) T2K electronics Beam structure ~ 8 (9?) bunches / spill bunch width ~ 60 nsec bunch separation ~ 600 nsec spill duration ~ 5  sec Time between.
AHCAL Electronics. Status Commissioning and Integration Peter Göttlicher for the AHCAL developers CALICE meeting UT Arlington, March 12th, 2010.
AHCAL – DIF Interface EUDET annual meeting – Paris Oct M. Reinecke.
7 Nov 2007Paul Dauncey1 Test results from Imperial Basic tests Source tests Firmware status Jamie Ballin, Paul Dauncey, Anne-Marie Magnan, Matt Noy Imperial.
AHCAL electronics. Status and Outlook Peter Göttlicher for the AHCAL developers CALICE meeting UT Arlington, March 11th, 2010.
The MPPC Study for the GLD Calorimeter Readout Introduction Measurement of basic characteristics –Gain, Noise Rate, Cross-talk Measurement of uniformity.
AHCAL Electronics. Status and Outlook Mathias Reinecke CALICE collaboration meeting Cambridge, UK March 16th-19th, 2012.
Light Calibration System (LCS) Temperature & Voltage Dependence Option 2: Optical system Option 2: LED driver Calibration of the Hadronic Calorimeter Prototype.
1. DESY tests 2. Electronics developments 3. Optical developments 4. Outlook Casablanca J. Cvach, CALICE Coll. meeting.
Front-End electronics for Future Linear Collider calorimeters C. de La Taille IN2P3/LAL Orsay on behalf of the CALICE and EUDET collaborations
R&D for a 2nd generation AHCAL prototype LCWS 2007 – DESY Hamburg Mathias Reinecke on behalf of the AHCAL partners.
GLD-CAL and MPPC Based on talks by T. Takeshita and H. K. Kawagoe / Kobe-U 2005-Sep-16 MPPC
L.Royer– Calice LLR – Feb Laurent Royer, J. Bonnard, S. Manen, P. Gay LPC Clermont-Ferrand R&D pole MicRhAu dedicated to High.
AHCAL Electronics. SPIROC2 and HBU measurement results Mathias Reinecke CALICE main meeting Univ. HASSAN II, Casablanca, Morocco Sept. 23rd, 2010.
SPIROC update Felix Sefkow Most slides from Ludovic Raux HCAL main meeting April 18, 2007.
CALICE Tungsten HCAL Prototype status Erika Garutti Wolfgang Klempt Erik van der Kraaij CERN LCD International Workshop on Linear Colliders 2010, October.
5-9 June 2006Erika Garutti - CALOR CALICE scintillator HCAL commissioning experience and test beam program Erika Garutti On behalf of the CALICE.
Scintillator HCAL read-out and calibration Felix Sefkow TILC08 at Sendai, Japan March 4, 2008.
Front-End electronics for Future Linear Collider calorimeters C. de La Taille IN2P3/LAL Orsay On behalf of the CALICE collaboration
5 May 2006Paul Dauncey1 The ILC, CALICE and the ECAL Paul Dauncey Imperial College London.
SKIROC status CERN – CALICE/EUDET electronic & DAQ meeting – 22/03/2007 Presented by Julien Fleury.
1 Second generation Front-end chip for H-Cal SiPM readout : SPIROC Réunion EUDET France – LAL – jeudi 5 avril 2007 M. Bouchel, F. Dulucq, J. Fleury, C.
Front-end Electronic for the CALICE ECAL Physic Prototype Christophe de La Taille Julien Fleury Gisèle Martin-Chassard Front-end Electronic for the CALICE.
CALICE/EUDET FEE status C. de LA TAILLE. 31 aug 2009 EUDET SC meeting Status of JRA3 Front End Electronics 2 ILC front-end ASICs : the ROC chips SPIROC.
Next generation HCAL prototype Felix Sefkow EUDET electronics meeting UCL, December 5, 2006.
Study of the MPPC for the GLD Calorimeter Readout Satoru Uozumi (Shinshu University) for the GLD Calorimeter Group Kobe Introduction Performance.
Front end electronics for the Tile HCAL prototype Felix Sefkow DESY CALICE Collaboration ECFA workshop Durham September 1, 2004.
SKIROC status Calice meeting – Kobe – 10/05/2007.
Performance of 1600-pixel MPPC for the GLD Calorimeter Readout Jan. 30(Tue.) Korea-Japan Joint Shinshu Univ. Takashi Maeda ( Univ. of Tsukuba)
SiW Electromagnetic Calorimeter - The EUDET Module Calorimeter R&D for the within the CALICE collaboration SiW Electromagnetic Calorimeter - The EUDET.
 13 Readout Electronics A First Look 28-Jan-2004.
Understanding of SKIROC performance T. Frisson (LAL) On behalf of the SiW ECAL team Special thanks to the electronic and DAQ experts: Stéphane Callier,
DHCAL Acquisition with HaRDROC VFE Vincent Boudry LLR – École polytechnique.
STATUS OF SPIROC measurement
ASIC PMm2 Pierre BARRILLON, Sylvie BLIN, Selma CONFORTI,
CTA-LST meeting February 2015
Felix Sefkow DESY LDC at Vienna November 17, 2005
Status of HBU, EBU and SM_HBU
CALICE meeting 2007 – Prague
R&D activity dedicated to the VFE of the Si-W Ecal
R&D on large photodetectors and readout electronics FJPPL KEK/Orsay JE Campagne, S. Conforti, F. Dulucq, C. de La Taille, G. Martin-Chassard,, A.
Testbeam Timing Issues.
Second generation Front-end chip for H-Cal SiPM readout : SPIROC
A First Look J. Pilcher 12-Mar-2004
Front-End electronics for CALICE Calorimeter review Hamburg
Felix Sefkow CALICE/EUDET electronics meeting CERN, July 12, 2007
Joint Research Activity 3: Calorimetry
02 / 02 / HGCAL - Calice Workshop
Scintillator HCAL: LOI issues
STATUS OF SKIROC and ECAL FE PCB
ECAL Electronics Status
ITEP&MEPhI status report on tile production and R&D activities
Scintillator tile- SiPM systems R&D
SKIROC status Calice meeting – Kobe – 10/05/2007.
CALICE meeting 2007 – Prague
SKIROC status CERN – CALICE/EUDET electronic & DAQ meeting – 22/03/2007 Presented by Julien Fleury.
Scintillator HCal Prototype
TOF read-out for high resolution timing
SVT detector electronics
The MPPC Study for the GLD Calorimeter Readout
Presentation transcript:

Scintillator HCAL readout Felix Sefkow EUDET / CALICE electronics meeting CERN, March 23, 2007

Scintillator HCAL readout Topics: Scintillator HCAL plans SiPM and MPPC signals Noise level requirements Rate and dead time issues Trigger timing Felix Sefkow CALICE / EUDET electronics Scintillator HCAL readout

Scintillator HCAL readout ScHCAL goals Technology: scalable prototype with integrated electronics and minimized gap Scintillator sensor PCB integration Stitchable boards with readout traces Simplified calibration system Power and bias management Combine many HBUs to layer- units for assembly. 2000 channels / layer ~ 60 VFE ASICs ~1 FE FPGA Layer Concentrator (Signals / Power) Felix Sefkow CALICE / EUDET electronics Scintillator HCAL readout

Scintillator HCAL readout ScHCAL plans R&D steps Component prototypes of the above Thorough study of VFE interplay with SiPM and MPPC Winter 2007/08 Need VFE test board FE (VFE DAQ interface) adaptation Electronics: control software Build VFE + FE test board (fall 2007?) Need DAQ prototype: ODR, firmware, software framework System integration: power, calibration, monitoring systems Mechanics: adapt to scintillator cassettes, r/o boards, stack 2008 Felix Sefkow CALICE / EUDET electronics Scintillator HCAL readout

Scintillator HCAL readout ScHCAL physics Use time measurements to tag neutron hits Clean up picture for PFLOW reconstruction  cut at 5 ns Keep late hits for energy resolution  gate open for full bx T.Takeshita Felix Sefkow CALICE / EUDET electronics Scintillator HCAL readout

Scintillator HCAL readout Showers with timing Effect is stronger for Pb GLD DOD Felix Sefkow CALICE / EUDET electronics Scintillator HCAL readout

Scintillator HCAL readout Physics plan Timing measurement is considerable effort Case must be tested with beam Can we believe the neutron simulations? Large differences between models Can be done with existing HCAL modules Maybe partial instrumentation sufficient (10 layers, 2k channels) If SPIROC-1 successful, can be done in 2008 Probably easier with new DAQ than with CRCs Felix Sefkow CALICE / EUDET electronics Scintillator HCAL readout

Scintillator HCAL readout SiPMs Critical parameter for SiPM performance is noise above ½MIP threshold Occupancy < 10-4 translates into rate < ~ 300Hz Depends on dark rate, inter-pixel crosstalk and light yield; Rule of thumb: N(T) = Ndark * (Xtalk)T=LY/2 E.g. 2 MHz * (0.3)7 = 400 Hz Presently up to 3 kHz Light yield determines dynamic range and MIP efficiency Minimum 7-10 pixels/MIP - If threshold at 1.5 px possible Will always set threshold as low as possible To maximize MIP efficiency, energy resolution and robustness Electronics noise must not be limiting factor Felix Sefkow CALICE / EUDET electronics Scintillator HCAL readout

Scintillator HCAL readout Misha Danilov Comparison of different Multipixel Geiger Photo Diods (MGPD) MGPD were illuminated with Y11 (green) and scintillator (blue) light Efficiency was normalized to MPPC one . Noise frequency Felix Sefkow CALICE / EUDET electronics Scintillator HCAL readout

SPIROC: One channel schematic 50 -100ns 50-100ns Gain selection 8-bit threshold adjustment Reference voltage T 15ns DAC output Q HOLD Slow Shaper Fast Shaper Time measurement Charge measurement Fast ramp 300ns 12-bit Wilkinson ADC Trigger Depth 16 Common to the 36 channels 8-bit DAC 0-5V Low gain Preamplifier High gain Preamplifier Analog memory 50pF 5pF 0.1pF-1.5pF Conversion 80 µs READ Variable delay IN IN test Discri Ludovic Raux Felix Sefkow CALICE / EUDET electronics Scintillator HCAL readout

SPIROC : Photoelectron response simulation Ludovic Raux Simulation obtained with SiPM gain = 106 _ 1 pe = 160 fC High gain Preamplifier response Low gain Preamplifier response Fast shaper Tp=15ns Noise/pe ratio = 25 120mV/pe High gain Slow shaper 10mV/pe Tp=50ns Noise/pe ratio = 11 Low gain Slow shaper Tp=50ns 1mV/pe Noise/pe ratio = 3 Felix Sefkow CALICE / EUDET electronics Scintillator HCAL readout

Scintillator HCAL readout Noise limits Gain can be as small as 0.2*106 Noise can be so low that threshold at 1.5 p.e is possible Trigger mode: limit given by occupancy: 10-4  T > 4-5 σ( Noise) Noise must be below 1/5 * 1.5 * 0.2 * 106 e  N/p.e.> 17  High gain mode: Limit given by separation of single p.e. peaks  G > 3-4 σ (Noise) Noise must be below 1/4 * 0.2 * 106 e  N / p.e. > 20  Low gain mode: Limit given by MIP resolution dominated by Poisson statistics: σ(Noise) < 1/3 σ( Poisson) Noise must be below 0.2 * 106 e  N / p.e > 5  High gain (“calibration”) mode most challenging Felix Sefkow CALICE / EUDET electronics Scintillator HCAL readout

Scintillator HCAL readout Experience with MPPCs Operated at 2.something V  gain 0.3-0.4 * 106 (~ SiPM) Just works Keep an eye on dynamic range Actually no saturation seen so far in DESY 6 GeV e beam N oise= 40 ADC (calib mode) B.Lutz MPPC noise Satoru Uozumi Gain = 150 ADC Felix Sefkow CALICE / EUDET electronics Scintillator HCAL readout

Scintillator HCAL readout subjects of study Benjamin Lutz response for real signals: Is output signal amplitude linearly proportional to input signal charge? What differences do we expect for different photo sensors? auto-trigger: What is the expected difference to nowadays trigger generation? Does this avoid jitter problems with short shaping time? What do we expect in the single photon detection mode? Felix Sefkow CALICE / EUDET electronics Scintillator HCAL readout

Scintillator HCAL readout input signal * ASIC response = output signal Benjamin Lutz = * = scope measurement (DESY) simulation (LAL) = Felix Sefkow CALICE / EUDET electronics Scintillator HCAL readout

singel photon detection 5 shots of one light intensity setting slow shaping auto trigger To be simulated fast shaping Benjamin Lutz Felix Sefkow CALICE / EUDET electronics Scintillator HCAL readout

Scintillator HCAL readout Data volume ECAL: SKIROC 968 bits per time slice and 72 channels Buffer depth 5  5 kbit / chip Slab 7200 channels  100 VFE / FE If RAM full: 500 kbit / FE Occupancy Data reduction: JC 10-4, MW 10-2 10-4: per event: 10k hits or (50cm)2 or (10cm)2 in 25 layers 2000 hits per slab and train Distribution ILC: non-uniform per event, random and largely uniform per train Test beam: non-uniform and constant, up to 1 Felix Sefkow CALICE / EUDET electronics Scintillator HCAL readout

Scintillator HCAL readout FE readout speed Power considerations Assume bus capacitance 500 pF, gives I=1 MHz x 500 pF x 2V = 1mA Power dissipation 10 µW / chip, 1 mW for 100 chips  Readout clock speed few MHz: 1 - 5 MHz Might not be a hard limit – only # of bit flips count Daisy-chain VFEs: assume serial readout here Note: parallel lines to FE  shorter r/o times ECAL: read 100 SKIROCS with 100 x 5 kbit At 5 MHz: 100 ms (At 1 MHz: 500 ms  too slow for ILC) ILC: fine above 2.5 MHz Fewer VFE / FE: cost prohibitive (~300 € / FE) Test beam: asymptotic rate 5 events per cycle = 50 Hz (10 Hz) Can be higher if smaller number for VFEs read Felix Sefkow CALICE / EUDET electronics Scintillator HCAL readout

Scintillator HCAL readout ECAL buffer depth: ILC ILC: 3 MHz for 1 ms Occupancy 10-4 implies 300 Hz per channel, 0.3 hits per train  No problem for individual channel trigger .OR.ed trigger for 72 channels: 22 kHz, 22 triggers per train  Need additional assumptions to justify buffer depth of 5 Concentrated showers: concentrate 22 hits in < 5 time slices Felix Sefkow CALICE / EUDET electronics Scintillator HCAL readout

ECAL buffer depth: test beam Testbeam: 1-10 kHz for several seconds Occupancy 1 in central beam impact region 5 buffers full after 0.5 – 5 ms kHz is max rate for ILC-like spill structure 5 MHz readout: 100 ms: >95% dead time, 50 Hz asymptotic rate 10 Hz for 1 MHz r/o 20x20 cm2: 1600 channels, 20 chips , 250 (50) Hz asymptotic With 10% duty cycle of the beam marginally acceptable Multi-chip read-out in test beam: only technical test 10 % duty cycle of spill: 1-5 Hz average rate Felix Sefkow CALICE / EUDET electronics Scintillator HCAL readout

Scintillator HCAL readout SiPM readout SPIROC: Data volume: 36 channels, ADC + TDC (+ time stamp(s)) = 876 (1296) bits / event 16 time slices: 14 kbit (20.7kbit) Readout speed: 5 MHz: 3-4 ms / chip if RAM full 1 MHz: 14-20 ms / chip ILC: 200 ms max readout time 5 MHz: max 50 VFE / FE, 1 MHz: max 10 VFE / FE (or parallel) HCAL layer 2000 channels / 36/chip = 60 chips  < 5 MHz: > 1 FE Test beam: Asymptotic rate: 16 / 100-200 ms = 80-160 Hz Test beam layer: 1 m2  only 2x faster Felix Sefkow CALICE / EUDET electronics Scintillator HCAL readout

Scintillator HCAL readout SiPM occupancy Physics hits: in ttbar events # HCAL (3x3) ~ 1/3 # ECAL (1x1) Total # channels 5M vs 24 M here: occupancy about the same Background hits: need to re-evaluate, probably < ECAL Noise: rates above threshold in physics mode: Presently up to 3 kHz Ultimate requirement driven by occupancy considerations 10-4 translates into 300 Hz, see ECAL case Granularity 40x smaller than ECAL: no band width issue Accepting only prompt signals in short gate of 50-100ns wins factor 3-6  can accept up to 2 MHz, but no late hits then Low thresholds needed for low light intensity / thin scintillator  Occupancy characterized by noise, large uniform component Felix Sefkow CALICE / EUDET electronics Scintillator HCAL readout

SiPM buffer depth: ILC case ILC mode: 3 MHz 300 Hz – 3 kHz noise: 0.3 to 3 hits per train Buffer depth of 16 ok for individual trigger .OR. of 36 channels: trigger rate of 10 – 100 kHz Buffer of 16 slices fills up in 0.16 – 1.6 ms Not sufficient for ILC cycle Independent of physics topology, because noise and not physics induced Felix Sefkow CALICE / EUDET electronics Scintillator HCAL readout

SiPM buffer depth: test beam Testbeam mode Need to adjust readout cycle to noise rate and buffer depth Shorten r/o cycle to 0.1 ms? Asymptotic rate stays the same: 80 Hz for 200 ms r/o BUT: Without external trigger read mainly noise Physics fraction = beam rate / noise rate ~ 1/10 … 1/100 Effective rate for 1 kHz beam only 1 or few Hz for .OR.ed auto-trigger Order of 50 Hz for individual trigger Felix Sefkow CALICE / EUDET electronics Scintillator HCAL readout

Scintillator HCAL readout Fast timing 1 In present system shaping acts as latency – and is too short Would like to go from 200 ns to, say, 400 ns SiPM shaping in physics mode is shorter (50-100 ns)  need to decouple shaping and latency, store charge in-between See next slide Felix Sefkow CALICE / EUDET electronics Scintillator HCAL readout

Scintillator HCAL readout SPIROC timing, naively sample hold reset 10ns 50 ns 300 ns 400 ns stop TDC External trigger Or beam clock start Felix Sefkow CALICE / EUDET electronics Scintillator HCAL readout

Timing, more realistically validate hold reset 10ns 50 ns 300 ns 5000 ns drive TDC External trigger stop start beam clock Felix Sefkow CALICE / EUDET electronics Scintillator HCAL readout

Scintillator HCAL readout Fast timing 2 If validation in next clock cycle, loose data Dead-time = latency / clock (in test beam only) Long cycle (50000 ns): < 10%, no problem Hold in next cycle: to be clarified Promising solutions underway – do they co-exist with ECAL and DAQ? Felix Sefkow CALICE / EUDET electronics Scintillator HCAL readout

Scintillator HCAL readout Conclusion There is physics in the new EUDET chips We rely on modular DAQ and FE hardware and software The SPIROC analogue front end is challenged by low gain low noise MPPCs For SiPM readout, occupancy will be dominated by noise ILC will need full channel-by-channel zero suppression Test beam with ORed auto-trigger and limited buffer depth needs external trigger validation Fast timing is tricky… Felix Sefkow CALICE / EUDET electronics Scintillator HCAL readout