The Belle II Vertex Pixel Detector (PXD)

Slides:



Advertisements
Similar presentations
Radiation damage in silicon sensors
Advertisements

2nd Open Meeting of the SuperKEKB Collaboration, KEK, March 2009 Ladislav Andricek, MPI fuer Physik, HLL 1 DEPFET Sensor R&D and Prototyping - Status -
The Belle Silicon Vertex Detector T. Tsuboyama (KEK) 6 Dec Workshop New Hadrons with Various Flavors 6-7 Dec Nagoya Univ.
H1 SILICON DETECTORS PRESENT STATUS By Wolfgang Lange, DESY Zeuthen.
Workshop on Silicon Detector Systems, April at GSI Darmstadt 1 STAR silicon tracking detectors SVT and SSD.
Performance of the DZero Layer 0 Detector Marvin Johnson For the DZero Silicon Group.
Presentation at the PRC review, , DESY Status of DEPFET pixel detectors for ILC Peter Fischer for the DEPFET collaboration Bonn University:R.
Hamburg, Marcel Trimpl, Bonn University A DEPFET pixel-based Vertexdetector for TESLA 55. PRC -MeetingHamburg, Mai 2003 M. Trimpl University.
Monolithic Pixels R&D at LBNL Devis Contarato Lawrence Berkeley National Laboratory International Linear Collider Workshop, LCWS 2007 DESY Hamburg, May.
ECFA ILC Workshop, November 2005, ViennaLadislav Andricek, MPI für Physik, HLL DEPFET Project Status - in Summary Technology development thinning technology.
07 October 2004 Hayet KEBBATI -1- Data Flow Reduction and Signal Sparsification in MAPS Hayet KEBBATI (GSI/IReS)
Pixel hybrid status & issues Outline Pixel hybrid overview ALICE1 readout chip Readout options at PHENIX Other issues Plans and activities K. Tanida (RIKEN)
Vertex05, 8/11/05Jaap Velthuis, Bonn University DEPFET Status DEPFET Principle Readout modes Projects: –XEUS –WIMS –ILC ILC Testbeam results Summary &
Carlos Mariñas, IFIC, CSIC-UVEG DEPFET Technology for future colliders Carlos Mariñas IFIC-Valencia (Spain) 1 LCPS09, Ambleside.
Super-Belle Vertexing Talk at Super B Factory Workshop Jan T. Tsuboyama (KEK) Super B factory Vertex group Please visit
Fine Pixel CCD for ILC Vertex Detector ‘08 7/31 Y. Takubo (Tohoku U.) for ILC-FPCCD vertex group ILC vertex detector Fine Pixel CCD (FPCCD) Test-sample.
ILC VXD Review, Fermilab, October 23, 2007 Hans-Günther Moser, MPI für Physik DEPFET Devices Hans-Gunther Moser for the DEPFET Collaboration (
FPCCD Vertex detector 22 Dec Y. Sugimoto KEK.
Tsukuba-hall webcam 1 Beam Pipe and Vertex Detector extraction: on Nov. 10, 2010 Belle Detector Roll-out: Dec. 9, 2010 End-caps, CDC, B-ACC, TOF extraction:
LCWS08, Chicago, November 2008 Ladislav Andricek, MPI fuer Physik, HLL 1 DEPFET Active Pixel Sensors - Status and Plans - Ladislav Andricek for the DEPFET.
H.-G. Moser Max-Planck-Institut fuer Physik 1 st open meeting SuperBelle KEK Summary of PXD Session 1 Status of CAPSH. Hoedlmoser (Video)
BTeV Hybrid Pixels David Christian Fermilab July 10, 2006.
Irfu saclay Development of fast and high precision CMOS pixel sensors for an ILC vertex detector Christine Hu-Guo (IPHC) on behalf of IPHC (Strasbourg)
The development of the readout ASIC for the pair-monitor with SOI technology ~irradiation test~ Yutaro Sato Tohoku Univ. 29 th Mar  Introduction.
- Performance Studies & Production of the LHCb Silicon Tracker Stefan Koestner (University Zurich) on behalf of the Silicon Tracker Collaboration IT -
LHCb Vertex Detector and Beetle Chip
The Belle II DEPFET Pixel Detector
SuperKEKB 3nd open meeting July 7-9, 2009 Hans-Günther Moser MPI für Physik Sensor and ASIC R&D Sensor Prototype Production: running, ASICs: Switcher,
Design and Technology of DEPFET Active Pixel Sensors for Future e+e- Linear Collider Experiments G. Lutz a, L. Andricek a, P. Fischer b, K. Heinzinger.
The ultralight DEPFET Pixel Detector of the Belle II Experiment Florian Lütticke On behalf of the DEPFET Collaboration th.
1 Updates of EMCM Testing Jakob Haidl, Christian Koffmane, Felix Müller, Martin Ritter, Manfred Valentan o Hardware DHE (v3.2) Setups o Software o Measurements.
Particle Physics School Colloquium, May C. Koffmane, MPI für Physik, HLL, TU Berlin  DEPFETs at ILC and Belle II  Module Concept  results with.
1 Tests of EMCM Felix Müller on behalf of the MPP / HLL TestCrew (H.-G. Moser, C. Koffmane, M. Valentan) Belle II PXD – ASIC Review October , 2014.
Infinipix DEPFETs (for the ATHENA project) Seeon, May 2014 Alexander Bähr MPE 1 Alexander Bähr Max-Planck-Institute f. extraterrestr. Physics.
1 Updates of EMCM Testing J. Haidl, C. Koffmane, F. Müller, M. Valentan 8th Belle II VXD Workshop September University of Trieste.
1 FANGS for BEAST J. Dingfelder, A. Eyring, Laura Mari, C. Marinas, D. Pohl University of Bonn
PXD ASIC review, October 2014 ASIC Review 1 H-.G. Moser, 18 th B2GM, June 2014 Date and Location MPP, October 27, 10:00 – October 28, 16:00, Room 313 Reviewers:
Laser Measurements (as comparison to test beam data) Florian Lütticke University of Bonn 9 th VXD Belle 2 Workshop Valencia,
H.-G. Moser Max-Planck-Institut für Physik 2nd DEPFET workshop 3-6 May 2009 Open Issues Readout cycle: 10 µs or 20 µs ? Advantages of 20 µs: - smaller.
Simulation of a DEPFET Pixel Detector IMPRS Young Scientist Workshop July, 26 – 30, 2010 Christian Koffmane 1,2 1 Max-Planck-Institut für Physik, München.
Test beam preparations Florian Lütticke, Mikhail Lemarenko, Carlos Marinas University of Bonn (Prof. Norbert Wermes) DEPFET workshop Ringberg (June 12-15,
1 Characterization of Pilot Run Modules for the Belle II Pixel Detector Felix Müller Max-Planck-Institut für Physik IMPRS Young Scientist Workshop Ringberg.
Low Mass, Radiation Hard Vertex Detectors R. Lipton, Fermilab Future experiments will require pixelated vertex detectors with radiation hardness superior.
Pixel Sensors for the Mu3e Detector Dirk Wiedner on behalf of Mu3e February Dirk Wiedner PSI 2/15.
1 The Belle II Vertex Pixel Detector IMPRS Young Scientist Workshop July , 2014 Ringberg Castle Kreuth, Germany Felix Mueller.
TILC08, Sendai, March DEPFET Active Pixel Sensors for the ILC Marcel Vos for the DEPFET Collaboration (
Clear Performance and Demonstration of a novel Clear Concept for DEPFET Active Pixel Sensors Stefan Rummel Max-Planck-Institut für Physik – Halbleiterlabor.
Radiation Hardness of DEPFET Pixel Sensors Andreas Ritter IMPRS - Young Scientist Workshop 2010, Ringberg 1.
H.-G. Moser Max-Planck-Institut fuer Physik DEPFET Meeting Heidelberg Sept DEPFET Geometry for SuperBelle Sensor Geometry Pixel Pitch Constant/variable.
1 Test of Electrical Multi-Chip Module for Belle II Pixel Detector DPG-Frühjahrstagung der Teilchenphysik, Wuppertal 2015, T43.1 Belle II Experiment DEPFET.
1 First large DEPFET pixel modules for the Belle II Pixel Detector Felix Müller Max-Planck-Institut für Physik DPG-Frühjahrstagung der Teilchenphysik,
PXD ASIC Review, Oct Ladislav Andricek, MPG Halbleiterlabor Belle II PXD Overview (An attempt to describe the) Interfaces between ASICs and the Experiment.
ASICs1 Drain Current Digitizer Chip (DCD) Status and Future Plans.
Testsystems PXD6 - testing plans overview - by Jelena NINKOVIC Hybrid Boards for PXD6 - by Christian KOFFMANE Source measurements on DEPFET matrices using.
Latest results of EMCM tests / measurements
 Silicon Vertex Detector Upgrade for the Belle II Experiment
IOP HEPP Conference Upgrading the CMS Tracker for SLHC Mark Pesaresi Imperial College, London.
Gated Mode - System Aspects
Gated Mode - System Aspects
Silicon Pixel Detector for the PHENIX experiment at the BNL RHIC
DEPFET Active Pixel Sensors (for the ILC)
HV-MAPS Designs and Results I
Lars Reuen, 7th Conference on Position Sensitive Devices, Liverpool
Yasuhiro Sugimoto KEK 17 R&D status of FPCCD VTX Yasuhiro Sugimoto KEK 17
Niels Tuning (Outer Tracker Group LHCb)
The LHCb vertex detector
The LHCb Level 1 trigger LHC Symposium, October 27, 2001
Status of CCD Vertex Detector R&D for GLC
The LHCb Front-end Electronics System Status and Future Development
Why silicon detectors? Main characteristics of silicon detectors:
Presentation transcript:

The Belle II Vertex Pixel Detector (PXD) 02/01/08 The Belle II Vertex Pixel Detector (PXD) Felix Müller Ladislav Andricek, MPI Munich

Outline SuperKEKB and Belle II Vertex Detector (VXD) 02/01/08 Outline SuperKEKB and Belle II Vertex Detector (VXD) Pixel Detector (PXD) and its characteristics DEPFET technology and working principle The readout electronics Gated Mode Operation Summary and future plans 06.07.2015 Felix Mueller, IMPRS Young Scientist Workshop (2015) Ladislav Andricek, MPI Munich

SuperKEKB upgrade Belle II 02/01/08 SuperKEKB upgrade Belle II Nano beam scheme  smaller beam size (~nm) & increased beam currents (x2) L = 8 x 1035 cm-2 s-1 (40x larger than in KEKB) Ee- = 7 (8) GeV & Ee+ = 4 (3.5) GeV (bg = 0.42 (KEK)  0.28 (SuperKEK)) Ecm = 10.58 GeV - Y(4S) Changes involving the Vertex Detector (VXD): Four layers of Double Sided Si-Strip Detector (DSSD) with a larger radius Two layers of DEPFET pixel detector (PXD) 06.07.2015 Felix Mueller, IMPRS Young Scientist Workshop (2015) Ladislav Andricek, MPI Munich

Vertex Detector (VXD) Tasks of the vertex detector: Reconstruction of primary, secondary, … vertices of short-lived particles Decay of particles is typical in the order of 100 µm from the IP Detect tracks of low momentum particles (in high B field) which cannot make it to the main tracker Innermost detector system as close as possible to IP highly granular pixel sensors; provide most accurate 2D position information should be massless and still provide a large enough S/N Design and specifications to a larger extent driven by machine/beam characteristics Beam background, radiation damage, occupancy … BELLE PHYSICS II (Friday 11-12) 06.07.2015 Felix Mueller, IMPRS Young Scientist Workshop (2015)

Vertex Detector (VXD) Silicon Vertex Detector (SVD) 4 layers of double sided silicon strip detector R= 3.8 cm, 8.0 cm, 11.5 cm, 14 cm Pixel Detector (PXD) 2 layers of DEPFET pixels R = 1.4 cm, 2.2 cm 06.07.2015 Felix Mueller, IMPRS Young Scientist Workshop (2015)

PXD detector requirements Occupancy 0.1 hits/µm²/s Frame time 20µs (rolling shutter mode) Momentum range Low momentum (<1GeV) Acceptance 17°-150° Radiation ~20 kGy/year, 1·1010 n/ab-1cm² Belle II is dominated by low momentum tracks Modest intrinsic resolution (15 μm), dominated by multiple scattering → Moderate pixel size (50 x 75 μm²) Lowest possible material budget (0.2% X0/layer) [including ASICs] Due to higher background (20x-40x): Radiation damage and occupancy, fake hits and pile-up noise 10x higher event rate => higher trigger rate Replace inner layers of SVD with PXD 06.07.2015 Felix Mueller, IMPRS Young Scientist Workshop (2015)

Mockup of the Belle II PXD Detector Beam pipe radius: 10 mm (inner), 12.5 mm (outer) Half Ladder 06.07.2015 Felix Mueller, IMPRS Young Scientist Workshop (2015)

Half Ladder of DEPFET PXD Inner Layer (L1) Outer Layer (L2) # Modules 8 12 Distance from IP (cm) 1.4 2.2 Thickness (µm) 75 Total # pixels 3.072 x 106 4.608 x 106 Pixel size (µm²) 55, 60 x 50 70, 85 x 50 Sensitive area (mm²) 44.8 x 12.5 61.44 x 12.5 Sensor length (mm) 90 123 Frame/Row rate 50 kHz / 10MHz 50 kHz / 10 MHz ~0.2%X0 per layer 256 x 250 pixels 55 x 50 µm² (L1) 70 x 50 µm² (L2) 512 x 250 pixels 60 x 50 µm² (L1) 85 x 50 µm² (L2) 06.07.2015 Felix Mueller, IMPRS Young Scientist Workshop (2015)

DEPFET (Depleted p-channel Field Effect Transistor) Turn on DEPFET impinging particle Gate source Clear 06.07.2015 Felix Mueller, IMPRS Young Scientist Workshop (2015)

DEPFET (DEPleted p-channel Field Effect Transistor) 25.02.2014 DEPFET (DEPleted p-channel Field Effect Transistor) Cross-section of a DEPFET internal amplification: gq0.5 nA/e- A DEPFET is a MOSFET onto a sideward depleted silicon bulk 90 steps fabrication process 9 Implantations 19 Lithographies 2 Polysilicon layers 2 Aluminum layers 1 Copper layer Back side processing Impinging particle → Low noise → Low power → High signal/noise-ratio → Non-destructive readout 06.07.2015 Felix Mueller, IMPRS Young Scientist Workshop (2015) Felix Mueller, Max-Planck-Institute for Physics

Rolling Shutter Mode DCD row1 (on/off) Source Clear row1 (on/off) Gate Drain1 DCD 06.07.2015 Felix Mueller, IMPRS Young Scientist Workshop (2015)

Control and readout electronics Drain Current Digitizer (DCD) Keeps the columns line potential constant 8 bit ADCs Compensates for pedestal current variation (2bit DAC) Programmable gain and BW 256 input channels (4 per module) DEPFET SWITCHER Fast voltage pulses up to 20 V to activate gate rows and to clear the internal gate JTAG for interconnectivity tests 64 output drivers for both gate and clear channels  address 32 matrix segments 768 rows  192 electrical rows  6 ASICs needed per module Data Handling Processor (DHP) Pedestal correction Common mode correction Data reduction using the zero suppression Triggered readout scheme introduces further data reduction Controls the Switcher sequence Kapton Flex cable Power Supply via soldered contacts and bond wires Data transmission via bond wires 4 layers, 48 cm 06.07.2015 Felix Mueller, IMPRS Young Scientist Workshop (2015)

Lab Measurements and Beam Test Switcher B-18v1.0 PXD6 50x75µm² 50µm Test Beam, 2013 gq ~ 450 pA/e- DCDBv2 DHP0.2 seed charge Laser scan 5x6 pixels cluster charge Laser scan 5x6 pixels Homogeneous charge collection 06.07.2015 Felix Mueller, IMPRS Young Scientist Workshop (2015)

Injection Scheme of SuperKEKB continuous injection every 20 ms „noisy bunches“ create (junk) electrons within the Pixel Detector (PXD) mask noisy bunches  PXD deadtime = 20% best solution: gate the DEPFET during the passage of the noisy bunches Make detector „blind“ Intensity of particle beam decreasing, cooling down takes 4ms (worst case throw away all noisy recordings)  again intriguing property of DEPFET detector Applying appropriate voltages to Clear and Gate one can apply an electronic shutter: Clear pulse to all pixels during the noisy bunch injection Keep the Gate in the off state Two questions for our Test-Set-up: Can we protect charge in the internal Gate from being cleared? How much of the junk charge will arrive in the internal Gate? 06.07.2015 Felix Mueller, IMPRS Young Scientist Workshop (2015)

Selectivity of the Clear Process Real Clear External Gate in on state Suppressed Clear External Gate in off state Electrons can overcome the small potential barrier (<0.5V) by thermionic emission external gate shifts the potential of the internal gate by capacitive coupling  e- stay in internal gate The difference is due to the applied voltage at the external gate 06.07.2015 Felix Mueller, IMPRS Young Scientist Workshop (2015)

Hybrid 4 Setup – ASICs supporting GatedMode FPGA Read-Out with DCDBpipeline SwitcherB18v2 PXD6 Matrix Laser impinges from backside due to metal layers Lab Setup: small matrix, i.e. 64 rows, 32 columns (Experiment: large matrix, i.e. 768rows, 250columns) 06.07.2015 Felix Mueller, IMPRS Young Scientist Workshop (2015)

Signal Charge Restore Frame 1 2 3 4 5 6 7 8 Frame # Frame 1 Frame 2 Normal sequence Read No reset Laser No Reset Gated Mode Reset/Clear Frame 1 2 3 4 5 6 7 8 Lab Setup: small matrix, i.e. 64 rows, 32 columns (Experiment: large matrix, i.e. 768rows, 250columns) 06.07.2015 Felix Mueller, IMPRS Young Scientist Workshop (2015)

Gated Mode w/o Readout 1,6ms Charge is collected Impinge Laser Charge is generated Charge is collected Read rolling shutter mode 1,6ms Gated Mode Gated Mode Read 06.07.2015 Felix Mueller, IMPRS Young Scientist Workshop (2015)

Junk Charge Generation Frame # Frame 1 Frame 2 Frame 3 Frame 4 Frame 5 Frame 6 Frame 7 Frame 8 Normal sequence Laser Read No Reset No reset Reset/Clear Gated Mode Lab Setup: small matrix, i.e. 64 rows, 32 columns (Experiment: large matrix, i.e. 768rows, 250columns) 06.07.2015 Felix Mueller, IMPRS Young Scientist Workshop (2015)

Gated Mode w/o ReadOut – Junk Charge Generation ReadnoClear + Laser ReadnoClear Read&Clear Gated & Readout Gated & Laser & Readout Gated & Readout ReadnoClear ReadnoClear 06.07.2015 Felix Mueller, IMPRS Young Scientist Workshop (2015)

Gated Mode with ReadOut – Junk Charge Generation ReadnoClear + Laser ReadnoClear Read&Clear Gated Gated +Laser Gated ReadnoClear ReadnoClear rows sensitive for 100ns 06.07.2015 Felix Mueller, IMPRS Young Scientist Workshop (2015)

Summary and Outlook Measurements with small matrix and one set of ASIC pair Many beam tests to study performance Proof of GatedMode operation to „noisy“ bunches Future plans: Use silicon substrate as supporting structure for ASICs and Sensor (-> next talk by Jakob Haidl) Operate system in an experimental environment (14 ASICs, small capacitors, no surrounding PCB) Next months: large prototype sensor („pilot-run“) equipped with latest generation of ASICs: characterization of ASICs / operation of matrix 06.07.2015 Felix Mueller, IMPRS Young Scientist Workshop (2015)