Lecture 10: Circuit Families

Slides:



Advertisements
Similar presentations
Transmission Gate Based Circuits
Advertisements

CSET 4650 Field Programmable Logic Devices
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN1600) Lecture 21: Dynamic Combinational Circuit Design Prof. Sherief Reda Division of.
Chapter 09 Advanced Techniques in CMOS Logic Circuits
Combinational circuits Lection 6
Introduction to CMOS VLSI Design Lecture 18: Design for Low Power David Harris Harvey Mudd College Spring 2004.
Designing Combinational Logic Circuits: Part2 Alternative Logic Forms:
S. Reda EN160 SP’08 Design and Implementation of VLSI Systems (EN1600) Lecture 20: Combinational Circuit Design (2/3) Prof. Sherief Reda Division of Engineering,
Introduction to CMOS VLSI Design Circuit Families.
Circuit Families Adopted from David Harris of Harvey Mudd College.
EE141 © Digital Integrated Circuits 2nd Combinational Circuits 1 Digital Integrated Circuits A Design Perspective Designing Combinational Logic Circuits.
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Lecture 18: Static Combinational Circuit Design (2/2) Prof. Sherief Reda Division.
Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 10.1 EE4800 CMOS Digital IC Design & Analysis Lecture 10 Combinational Circuit Design Zhuo Feng.
EE415 VLSI Design DYNAMIC LOGIC [Adapted from Rabaey’s Digital Integrated Circuits, ©2002, J. Rabaey et al.]
EE 447 VLSI Design Lecture 8: Circuit Families.
Ratioed Circuits Ratioed circuits use weak pull-up and stronger pull-down networks. The input capacitance is reduced and hence logical effort. Correct.
Lecture 10: Circuit Families. CMOS VLSI DesignCMOS VLSI Design 4th Ed. 10: Circuit Families2 Outline  Pseudo-nMOS Logic  Dynamic Logic  Pass Transistor.
CSE477 L07 Pass Transistor Logic.1Irwin&Vijay, PSU, 2003 CSE477 VLSI Digital Circuits Fall 2003 Lecture 07: Pass Transistor Logic Mary Jane Irwin (
Advanced VLSI Design Unit 04: Combinational and Sequential Circuits.
Introduction to CMOS VLSI Design Lecture 9: Circuit Families
Dynamic Logic.
EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Dynamic CMOS LogicDynamic CMOS Logic V1.0 5/4/2003.
Static Logic vs. Pseudo-nMOS Static Logic includes pull-up and pull-down networks - 2n transistors for n-input function. Pseudo-nMOS - n+1 transistors.
EE 466/586 VLSI Design Partha Pande School of EECS Washington State University
Lecture 08: Pass Transistor Logic
COE 360 Principles of VLSI Design Delay. 2 Definitions.
COMP541 Transistors and all that… a brief overview
Digital Integrated Circuits A Design Perspective
Digital Integrated Circuits for Communication
Subject Name: Fundamentals Of CMOS VLSI Subject Code: 10EC56
COMP541 Transistors and all that… a brief overview
Review: Energy & Power Equations
Lecture 19: SRAM.
IV UNIT : GATE LEVEL DESIGN
Pass-Transistor Logic
Reading: Hambley Ch. 7; Rabaey et al. Sec. 5.2
CMOS VLSI Design Chapter 9: Combinational Circuits Chapter 10: Sequential Circuits This work is protected by Canadian copyright laws and is provided.
ELEC 5270/6270 Spring 2015 Low-Power Design of Electronic Circuits Pseudo-nMOS, Dynamic CMOS and Domino CMOS Logic Vishwani D. Agrawal James J. Danaher.
Chapter 6 (II) Designing Combinational Logic Circuits (II)
Ratioed Logic.
Lecture 10: Circuit Families
COMBINATIONAL LOGIC.
Subject Name: Fundamentals Of CMOS VLSI Subject Code: 10EC56
Lecture 6: Logical Effort
332:479 Concepts in VLSI Design Lecture 24 Power Estimation
Other handouts To handout next time ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ
DC & Transient Response
Dual Mode Logic An approach for high speed and energy efficient design
Day 27: November 6, 2013 Dynamic Logic
Introduction to CMOS VLSI Design Lecture 5: DC & Transient Response
CSET 4650 Field Programmable Logic Devices
Lecture 6: Logical Effort
Introduction to CMOS VLSI Design Lecture 5: Logical Effort
COMBINATIONAL LOGIC DESIGN
332:578 Deep Submicron VLSI Design Lecture 14 Design for Clock Skew
Day 25: November 7, 2011 Registers
Lecture 9: Combinational Circuit Design
Day 21: October 29, 2010 Registers Dynamic Logic
Combinational Circuit Design
Lecture 6: Logical Effort
CMOS VLSI Design Chapter 9: Combinational Circuits Chapter 10: Sequential Circuits This work is protected by Canadian copyright laws and is provided.
Lecture 7: Power.
Lecture 5: DC & Transient Response
Lecture 7: Power.
Introduction to CMOS VLSI Design Lecture 4: DC & Transient Response
Lecture 10: Circuit Families
COMP541 Transistors and all that… a brief overview
COMBINATIONAL LOGIC - 2.
COMBINATIONAL LOGIC - 3.
ELEC 5270/6270 Spring 2009 Low-Power Design of Electronic Circuits Pseudo-nMOS, Dynamic CMOS and Domino CMOS Logic Vishwani D. Agrawal James J. Danaher.
Presentation transcript:

Lecture 10: Circuit Families

Outline Pseudo-nMOS Logic Dynamic Logic Pass Transistor Logic 10: Circuit Families

Introduction What makes a circuit fast? I = C dV/dt -> tpd  (C/I) DV low capacitance high current small swing Logical effort is proportional to C/I pMOS are the enemy! High capacitance for a given current Can we take the pMOS capacitance off the input? Various circuit families try to do this… 10: Circuit Families

Ratioed gates The ratioed gate consists of an nMOS pulldown network and some pullup device called the static load. When the pulldown network is OFF, the static load pulls the output to 1. When the pulldown network turns ON, it fights the static load. The static load must be weak enough that the output pulls down to an acceptable 0. Stronger static loads produce faster rising outputs, but increase VOL, degrade the noise margin, and burn more static power when the output should be 0. 10: Circuit Families

(a) Large resistors take much space (b) nMOS pull the output up to VGG-Vt, (c) depletion mode transitors with vgs=0 are always weakly on. 10: Circuit Families

Pseudo-nMOS In the old days, nMOS processes had no pMOS Instead, use pull-up transistor that is always ON In CMOS, use a pMOS that is always ON Ratio issue Make pMOS about ¼ effective strength (1/2 effective width) of pulldown network برای آنکه یک چهارم قدرت پایینی را در بالایی داشته باشیم پهنای بالایی نصف پایینی باشد (چون پی ماس خود به خود ضعیف تر است). این حالت به ازای پی مساوی 8 در شکل فوق به دست می آید که نمودار معادلش رسم نشده. 10: Circuit Families

gu is three times as great because the current is 1/3 as much. For the widths shown, the pMOS transistors produce I/3 and the nMOS networks produce 4I/3. The logical effort for each transition is computed as the ratio of the input capacitance to that of a complementary CMOS inverter with equal current for that transition. نسبت ها به گونه ای انتخاب شده که شبکه پول دان چهار برابر قوی تر باشد (عرضش دو برابر بیشتر باشد) و در عین حال جریان خروجی در حالت پول دان معادل جریان خروجی واحد (یعنی آی) باشد. For the falling transition: (4I/3 – I/3)=I compare with unit CMOS invertor (4/3)/3=4/9 gu is three times as great because the current is 1/3 as much. The parasitic delay is also found by counting output capacitance and comparing it to an inverter with equal current. 10: Circuit Families

Pseudo-nMOS Gates Design for unit current on output to compare with unit inverter. pMOS fights nMOS 10: Circuit Families

Pseudo-nMOS Gates Design for unit current on output to compare with unit inverter. pMOS fights nMOS 10: Circuit Families

Pseudo-nMOS Design Ex: Design a k-input AND gate using pseudo-nMOS. Estimate the delay driving a fanout of H G = 1 * 8/9 = 8/9 F = GBH = 8H/9 P = 1 + (4+8k)/9 = (8k+13)/9 N = 2 D = NF1/N + P = برمبنای مقادیر متوسط عمل می کند. (DeMorgan: static CMOS inverters followed by a k-input pseudo-nMOS NOR) 10: Circuit Families

Pseudo-nMOS Power Pseudo-nMOS draws power whenever Y = 0 Called static power P = IDDVDD A few mA / gate * 1M gates would be a problem Explains why nMOS went extinct Use pseudo-nMOS sparingly for wide NORs Turn off pMOS when not in use توجه کنید که گیت های سی ماس در حالت استاتیک تقریبا توان مصرفی ندارند ولی در اینجا در خالت استاتیک اگرخروجی صفرباشد هردو ترانزیستور روشن بوده و توان مصرفی داریم. از این خانواده به ندرت و در مورد نورهای وسیع (با ورودی های زیاد) استفاده می شود. 10: Circuit Families

Ratio Example* The chip contains a 32 word x 48 bit ROM Uses pseudo-nMOS decoder and bitline pullups On average, one wordline and 24 bitlines are high Find static power drawn by the ROM Ion-p = 36 mA, VDD = 1.0 V Solution: 10: Circuit Families

Dynamic Logic Dynamic gates uses a clocked pMOS pullup Two modes: precharge and evaluate ترانزیستور پی ماس قوی تر از شبه ان ماس است. لذا در طول پیش شارژ که ترانزیستور پی ماس روشن است خروجی یک خواهد بود (یا باید چنین باشد). به عبارتی در فاز پیش شارژ خروجی همواره به یک برده می شود. سپس در فاز بعد اجازه یک ماندن یا صفر شدن به آن داده می شود. پس از خاموش شدن پی ماس در فاز اولویشن خروجی بسته به مقدار ورودی می تواند یک بماند (اگر ان ماس خاموش باشد) یا صفر شود (اگر ان ماس روشن شود). 10: Circuit Families

As usual, the pulldown transistors’ widths are chosen to give unit resistance. Precharge occurs while the gate is idle and often may take place more slowly. Therefore, the precharge transistor width is chosen for twice unit resistance. This reduces the capacitive load on the clock and the parasitic capacitance at the expense of greater rising delays. 10: Circuit Families

The Foot What if pulldown network is ON during precharge? Use series evaluation transistor to prevent fight. 10: Circuit Families

Logical Effort 10: Circuit Families

Monotonicity A fundamental difficulty: Dynamic gates require monotonically rising inputs during evaluation 0 -> 0 0 -> 1 1 -> 1 But not 1 -> 0 خروجی را با بار خازنی در نظر بگیرید. وقتی خروجی صفر شود دیگر راهی برای شارژ ندارد مگر آنکه به مرحله پیش شارژ برود. 10: Circuit Families

Monotonicity Woes But dynamic gates produce monotonically falling outputs during evaluation Illegal for one dynamic gate to drive another! 10: Circuit Families

Domino Gates Follow dynamic stage with inverting static gate Dynamic / static pair is called domino gate Produces monotonic outputs 10: Circuit Families

Domino Optimizations Each domino gate triggers next one, like a string of dominos toppling over Gates evaluate sequentially but precharge in parallel Thus evaluation is more critical than precharge HI-skewed static stages can perform logic گیت های سی ماس در دامینو را های اسکیو قرار می دهند زیرا خروجی گیت های دینامیک به صورت یکنوا کاهشی هستند پس خروجی سی ماس ها یکنوا افزایشی هستند. A 8-input domino multiplexer built from two 4-input dynamic multiplexers and a HI-skew NAND gate. 10: Circuit Families

Dual-Rail Domino Domino only performs noninverting functions: AND, OR but not NAND, NOR, or XOR Dual-rail domino solves this problem Takes true and complementary inputs (_h and _l) Produces true and complementary outputs جدول: در حالت پیش شارژ ورودی ها باید همگی صفر باشند، چه ورودی های های چه ورودی های لو! در هیچ حالتی نباید ورودی های های و لو هر دو یک باشند. sig_h sig_l Meaning Precharged 1 ‘0’ ‘1’ invalid 10: Circuit Families

Example: AND/NAND Given A_h, A_l, B_h, B_l Compute Y_h = AB, Y_l = AB Pulldown networks are conduction complements 10: Circuit Families

Example: XOR/XNOR Sometimes possible to share transistors دو تا ترانزیستور بیرونی به صورت ضربدری قرار گرفته اند (بین درین ترانزیستور نزدیک و سورس ترانزیستور مقابل). با دقت می توان نحوه عملکرد را تشخیص داد. اگر از اشتراک گذاری ترانیستورها استفاده نشود تعداد ترانزیستورهای لازم هشت خواهد بود. چهارتا برای پیاده سازی تابع اصلی و چهارتا برای مکمل آن (اف و اف بار) 10: Circuit Families

Leakage Dynamic node floats high during evaluation Transistors are leaky (IOFF  0) Dynamic value will leak away over time Formerly miliseconds, now nanoseconds Use keeper to hold dynamic node Must be weak enough not to fight evaluation 10: Circuit Families

Charge Sharing Dynamic gates suffer from charge sharing در فاز اولویشن هستیم و پی ماس خاموش است. اگر ای و بی هر دو صفر باشند و ای در یک لحظه ای یک شود خروجی باید همچنان یک بماند. ولی با روشن شدن ترانزیستوری که ای ورودی آن است ایکس و وای به هم وصل شده و ولتاژ خروجی بین خازن ها تقسیم می شود. لذا خروجی کم می شود. البته این در صورتی است که در حالت اولیه خازن سی ایکس دشارژ باشد. 10: Circuit Families

Secondary Precharge Solution: add secondary precharge transistors Typically need to precharge every other node Big load capacitance CY helps as well 10: Circuit Families

Noise Sensitivity Dynamic gates are very sensitive to noise Inputs: VIH  Vtn Outputs: floating output susceptible noise Noise sources Capacitive crosstalk Charge sharing Power supply noise Feedthrough noise And more! 10: Circuit Families

Power Domino gates have high activity factors Output evaluates and precharges If output probability = 0.5, a = 0.5 Output rises and falls on half the cycles Clocked transistors have a = 1 Leads to very high power consumption 10: Circuit Families

Domino Summary Domino logic is attractive for high-speed circuits 1.3 – 2x faster than static CMOS But many challenges: Monotonicity, leakage, charge sharing, noise Widely used in high-performance microprocessors in 1990s when speed was king Largely displaced by static CMOS now that power is the limiter Still used in memories for area efficiency 10: Circuit Families

Pass Transistor Circuits Use pass transistors like switches to do logic Inputs drive diffusion terminals as well as gates CMOS + Transmission Gates: 2-input multiplexer Gates should be restoring 10: Circuit Families

LEAP LEAn integration with Pass transistors Get rid of pMOS transistors Use weak pMOS feedback to pull fully high Ratio constraint اگر مثلا اس و ای هر دو یک باشند آنگاه خروجی ماس (یعنی سورس) حداکثر به اندازه «ای» منهای ولتاژ ترشولد بالا می آید. پی ماس می تواند کمک کند که در چنین حالتی خروجی کاملا یک شود. 10: Circuit Families

CPL Complementary Pass-transistor Logic Dual-rail form of pass transistor logic Avoids need for ratioed feedback Optional cross-coupling for rail-to-rail swing 10: Circuit Families

Pass Transistor Summary Researchers investigated pass transistor logic for general purpose applications in the 1990’s Benefits over static CMOS were small or negative No longer generally used However, pass transistors still have a niche in special circuits such as memories where they offer small size and the threshold drops can be managed 10: Circuit Families