The Toroidal Sporadic Source: Understanding Temporal Variations

Slides:



Advertisements
Similar presentations
Request Dispatching for Cheap Energy Prices in Cloud Data Centers
Advertisements

SpringerLink Training Kit
Luminosity measurements at Hadron Colliders
From Word Embeddings To Document Distances
Choosing a Dental Plan Student Name
Virtual Environments and Computer Graphics
Chương 1: CÁC PHƯƠNG THỨC GIAO DỊCH TRÊN THỊ TRƯỜNG THẾ GIỚI
THỰC TIỄN KINH DOANH TRONG CỘNG ĐỒNG KINH TẾ ASEAN –
D. Phát triển thương hiệu
NHỮNG VẤN ĐỀ NỔI BẬT CỦA NỀN KINH TẾ VIỆT NAM GIAI ĐOẠN
Điều trị chống huyết khối trong tai biến mạch máu não
BÖnh Parkinson PGS.TS.BS NGUYỄN TRỌNG HƯNG BỆNH VIỆN LÃO KHOA TRUNG ƯƠNG TRƯỜNG ĐẠI HỌC Y HÀ NỘI Bác Ninh 2013.
Nasal Cannula X particulate mask
Evolving Architecture for Beyond the Standard Model
HF NOISE FILTERS PERFORMANCE
Electronics for Pedestrians – Passive Components –
Parameterization of Tabulated BRDFs Ian Mallett (me), Cem Yuksel
L-Systems and Affine Transformations
CMSC423: Bioinformatic Algorithms, Databases and Tools
Some aspect concerning the LMDZ dynamical core and its use
Bayesian Confidence Limits and Intervals
实习总结 (Internship Summary)
Current State of Japanese Economy under Negative Interest Rate and Proposed Remedies Naoyuki Yoshino Dean Asian Development Bank Institute Professor Emeritus,
Front End Electronics for SOI Monolithic Pixel Sensor
Face Recognition Monday, February 1, 2016.
Solving Rubik's Cube By: Etai Nativ.
CS284 Paper Presentation Arpad Kovacs
انتقال حرارت 2 خانم خسرویار.
Summer Student Program First results
Theoretical Results on Neutrinos
HERMESでのHard Exclusive生成過程による 核子内クォーク全角運動量についての研究
Wavelet Coherence & Cross-Wavelet Transform
yaSpMV: Yet Another SpMV Framework on GPUs
Creating Synthetic Microdata for Higher Educational Use in Japan: Reproduction of Distribution Type based on the Descriptive Statistics Kiyomi Shirakawa.
MOCLA02 Design of a Compact L-­band Transverse Deflecting Cavity with Arbitrary Polarizations for the SACLA Injector Sep. 14th, 2015 H. Maesaka, T. Asaka,
Hui Wang†*, Canturk Isci‡, Lavanya Subramanian*,
Fuel cell development program for electric vehicle
Overview of TST-2 Experiment
Optomechanics with atoms
داده کاوی سئوالات نمونه
Inter-system biases estimation in multi-GNSS relative positioning with GPS and Galileo Cecile Deprez and Rene Warnant University of Liege, Belgium  
ლექცია 4 - ფული და ინფლაცია
10. predavanje Novac i financijski sustav
Wissenschaftliche Aussprache zur Dissertation
FLUORECENCE MICROSCOPY SUPERRESOLUTION BLINK MICROSCOPY ON THE BASIS OF ENGINEERED DARK STATES* *Christian Steinhauer, Carsten Forthmann, Jan Vogelsang,
Particle acceleration during the gamma-ray flares of the Crab Nebular
Interpretations of the Derivative Gottfried Wilhelm Leibniz
Advisor: Chiuyuan Chen Student: Shao-Chun Lin
Widow Rockfish Assessment
SiW-ECAL Beam Test 2015 Kick-Off meeting
On Robust Neighbor Discovery in Mobile Wireless Networks
Chapter 6 并发:死锁和饥饿 Operating Systems: Internals and Design Principles
You NEED your book!!! Frequency Distribution
Y V =0 a V =V0 x b b V =0 z
Fairness-oriented Scheduling Support for Multicore Systems
Climate-Energy-Policy Interaction
Hui Wang†*, Canturk Isci‡, Lavanya Subramanian*,
Ch48 Statistics by Chtan FYHSKulai
The ABCD matrix for parabolic reflectors and its application to astigmatism free four-mirror cavities.
Measure Twice and Cut Once: Robust Dynamic Voltage Scaling for FPGAs
Online Learning: An Introduction
Factor Based Index of Systemic Stress (FISS)
What is Chemistry? Chemistry is: the study of matter & the changes it undergoes Composition Structure Properties Energy changes.
THE BERRY PHASE OF A BOGOLIUBOV QUASIPARTICLE IN AN ABRIKOSOV VORTEX*
Quantum-classical transition in optical twin beams and experimental applications to quantum metrology Ivano Ruo-Berchera Frascati.
FW 3.4: More Circle Practice
ارائه یک روش حل مبتنی بر استراتژی های تکاملی گروه بندی برای حل مسئله بسته بندی اقلام در ظروف
Decision Procedures Christoph M. Wintersteiger 9/11/2017 3:14 PM
Online Social Networks and Media
Limits on Anomalous WWγ and WWZ Couplings from DØ
Presentation transcript:

The Toroidal Sporadic Source: Understanding Temporal Variations Pokorny p., Brown P. G., Moorhead A. V., Wiegert P. Meteoroids 2016, 06-10 June

Meteoroid Environment at the Earth

North Toroidal Source - cMOR

North Toroidal Showers Name ID Solar. Lon Vg [km/s] Parent Body Lambda Lyrids LLY 41.0 33.4 May Zeta Cyginids MZC 60.0 29.2 Alpha Lacertids ALA 105.5 38.3 Psi Cassiopeiids PCY 117.5 44.0 Lambda Draconids LDR 196.0 37.5 October Ursae Majorids OCU 204.7 52.0 Alpha Ursae Majorids AUM 209.0 35.6 Xi Draconids XDR 210.8 35.8 October Kappa Draconids OKD 216.0 37.3 November I Draconids NID 241.0 43.0 2009 WN25 Quadrantids QUA 283.5 41.7 2003 EH1/96P Canum Venaticids CVN 293.0 52.6 Lambda Bootids LBO 295.5 Theta Coronae Borealids TCB 296.0 37.7 ?

North toroidal source The sporadic background

North Toroidal Source The sporadic background – Halley-type comets (Pokorny et al. 2014)

North Toroidal Source The sporadic background – Halley-type comets (Pokorny et al. 2013) The vast majority of observed showers – unknown parent body

North Toroidal Source The sporadic background – Halley-type comets (Pokorny et al. 2013) The vast majority of observed showers – unknown parent body Highly inclined showers – Kozai oscillations

Kozai Oscillations 𝐼 𝑐𝑟𝑖𝑡 ~39,2° 𝑐= 1− 𝑒 2 cos 𝐼

The Solution Idea: Use these oscillations as a constraint for the parent body population

The Solution Idea: Use these oscillations as a constraint for the parent body population Result: 169 potential parent bodies (out of ∼ 600,000 bodies)

The Solution Idea: Use these oscillations as a constraint for the parent body population Result: 169 potential parent bodies (out of ∼ 600,000 bodies) Next step: Reconnaissance Integrate all parent bodies back in time (25,000 yr) – 10,000 clones Get a median orbit for all parent bodies – pick parent candidates For each parent body 5 clones , 10,000 yr ago, closest to the median orbit Every 100 yr create an outburst using Jones & Brown (1995) model Size distribution: 30𝜇m, 100𝜇m, 300𝜇m, 1000𝜇m Record all potential impacts – nodal distance with the Earth < 0.01 au

The Solution Idea: Use these oscillations as a constraint for the parent body population Result: 169 potential parent bodies (out of ∼ 600,000 bodies) Next step: Reconnaissance Integrate all parent bodies back in time (25,000 yr) – 10,000 clones Get a median orbit for all parent bodies – pick parent candidates For each parent body 5 clones , 10,000 yr ago, closest to the median orbit Every 100 yr create an outburst using Jones & Brown (1995) model Size distribution: 30𝜇m, 100𝜇m, 300𝜇m, 1000𝜇m Record all potential impacts – nodal distance with the Earth < 0.01 au

North toroidal source - more Parent body candidates Radar meteors

North toroidal source - more Parent body candidates Radar meteors

North toroidal source - more Parent body candidates Radar meteors

Shower association All meteors closer than 0.01 au during 1975 – 2025

Shower association All meteors closer than 0.01 au during 1975 – 2025 Using their orbital elements we get the solar longitude, the ecliptic longitude and latitude, and the geocentric velocity

Shower association All meteors closer than 0.01 au during 1975 – 2025 Using their orbital elements we get the solar longitude, the ecliptic longitude and latitude, and the geocentric velocity What is a potential meteor shower? We focus only on observed meteor showers (regardless on obs. method) Solar longitude difference < 20° (long lasting showers can be mean) Impact velocity difference < 20% Radiant location difference < 8° For each outburst require at least 100 meteors for the association (for know parent bodies/showers usually > 1000) It’s a LOT of parameters to compare Total dispersion: Σ= Σ slon 2 + Σ 𝑣 g 2 + Σ rad 2

(2102) Tantalus (1975 YA) NEO, very close approaches to the Earth ~ 0.05 AU, 𝐻= 16 𝑚 Element Value Uncertainty (1s)   Units  e .29915 6.2315e-08   a 1.2900 1.0412e-09 AU q .90411 8.013e-08 i 64.006 1.6762e-05 deg node 94.370 6.8383e-06 peri 61.552 1.7615e-05

(2102) Tantalus (1975 YA)

(2102) Tantalus (1975 YA)

North toroidal showers Name ID Solar Lon Vg [km/s] Parent Body Lambda Lyrids LLY 41.0 33.4 May Zeta Cyginids MZC 60.0 29.2 Alpha Lacertids ALA 105.5 38.3 Psi Cassiopeiids PCY 117.5 44.0 Lambda Draconids LDR 196.0 37.5 October Ursae Majorids OCU 204.7 52.0 Alpha Ursae Majorids AUM 209.0 35.6 Xi Draconids XDR 210.8 35.8 October Kappa Draconids OKD 216.0 37.3 November I Draconids NID 241.0 43.0 2009 WN25 Quadrantids QUA 283.5 41.7 2003 EH1 Canum Venaticids CVN 293.0 52.6 Lambda Bootids LBO 295.5 Theta Coronae Borealids TCB 296.0 37.7

Lambda draconids (LDR) Shower lasts for 18 days (CMOR)

Lambda draconids (LDR) Potential parent body:143649 (2003 QQ47)

North toroidal showers Name ID Solar Lon Vg [km/s] Parent Body Lambda Lyrids LLY 41.0 33.4 May Zeta Cyginids MZC 60.0 29.2 Alpha Lacertids ALA 105.5 38.3 Psi Cassiopeiids PCY 117.5 44.0 Lambda Draconids LDR 196.0 37.5 2003 QQ47 October Ursae Majorids OCU 204.7 52.0 Alpha Ursae Majorids AUM 209.0 35.6 Xi Draconids XDR 210.8 35.8 October Kappa Draconids OKD 216.0 37.3 November I Draconids NID 241.0 43.0 2009 WN25 Quadrantids QUA 283.5 41.7 2003 EH1 Canum Venaticids CVN 293.0 52.6 Lambda Bootids LBO 295.5 Theta Coronae Borealids TCB 296.0 37.7

Alpha Ursae Majorids (AUM) Shower lasts for 17 days (CMOR)

Alpha Ursae Majorids (AUM) Potential parent body:(2010 QE2)

North toroidal showers Name ID Solar Lon Vg [km/s] Parent Body Lambda Lyrids LLY 41.0 33.4 May Zeta Cyginids MZC 60.0 29.2 Alpha Lacertids ALA 105.5 38.3 Psi Cassiopeiids PCY 117.5 44.0 Lambda Draconids LDR 196.0 37.5 2003 QQ47 October Ursae Majorids OCU 204.7 52.0 Alpha Ursae Majorids AUM 209.0 35.6 2010 QE2 Xi Draconids XDR 210.8 35.8 October Kappa Draconids OKD 216.0 37.3 November I Draconids NID 241.0 43.0 2009 WN25 Quadrantids QUA 283.5 41.7 2003 EH1 Canum Venaticids CVN 293.0 52.6 Lambda Bootids LBO 295.5 Theta Coronae Borealids TCB 296.0 37.7

XI draconids (XDR) Shower lasts for 7 days (CMOR)

XI Draconids (XDR) Potential parent body: (2002 SU)

North toroidal showers Name ID Solar Lon Vg [km/s] Parent Body Lambda Lyrids LLY 41.0 33.4 May Zeta Cyginids MZC 60.0 29.2 Alpha Lacertids ALA 105.5 38.3 Psi Cassiopeiids PCY 117.5 44.0 Lambda Draconids LDR 196.0 37.5 2003 QQ47 October Ursae Majorids OCU 204.7 52.0 Alpha Ursae Majorids AUM 209.0 35.6 2010 QE2 Xi Draconids XDR 210.8 35.8 2002 SU October Kappa Draconids OKD 216.0 37.3 November I Draconids NID 241.0 43.0 2009 WN25 Quadrantids QUA 283.5 41.7 2003 EH1 Canum Venaticids CVN 293.0 52.6 Lambda Bootids LBO 295.5 Theta Coronae Borealids TCB 296.0 37.7

October kappa draconids (okd) Shower lasts for 10 days (CMOR)

October kappa Draconids (OKD) Potential parent bodies: (2010 QE2)

North toroidal showers Name ID Solar Lon Vg [km/s] Parent Body Lambda Lyrids LLY 41.0 33.4 May Zeta Cyginids MZC 60.0 29.2 Alpha Lacertids ALA 105.5 38.3 Psi Cassiopeiids PCY 117.5 44.0 Lambda Draconids LDR 196.0 37.5 October Ursae Majorids OCU 204.7 52.0 Alpha Ursae Majorids AUM 209.0 35.6 Xi Draconids XDR 210.8 35.8 October Kappa Draconids OKD 216.0 37.3 November I Draconids NID 241.0 43.0 2009 WN25 Quadrantids QUA 283.5 41.7 2003 EH1 Canum Venaticids CVN 293.0 52.6 Lambda Bootids LBO 295.5 Theta Coronae Borealids TCB 296.0 37.7

November I draconids (NID) Shower lasts for 44 days (CMOR)

November I draconids (NID) Two potential parent bodies: (2009 WN25)

November I draconids (NID) Two potential parent bodies: (2009 WN25) 188349 (2003 TS9) Only several outbursts of 30 mm particles approx. 9 ka produce meteors Very stable orbit, now on a Mars-crossing orbit => meteoroids need a lot of time to get on the Earth-crossing orbits – longer simulations needed

North toroidal showers Name ID Solar Lon Vg [km/s] Parent Body Lambda Lyrids LLY 41.0 33.4 May Zeta Cyginids MZC 60.0 29.2 Alpha Lacertids ALA 105.5 38.3 Psi Cassiopeiids PCY 117.5 44.0 Lambda Draconids LDR 196.0 37.5 October Ursae Majorids OCU 204.7 52.0 Alpha Ursae Majorids AUM 209.0 35.6 Xi Draconids XDR 210.8 35.8 October Kappa Draconids OKD 216.0 37.3 November I Draconids NID 241.0 43.0 2009 WN25 Quadrantids QUA 283.5 41.7 2003 EH1 Canum Venaticids CVN 293.0 52.6 Lambda Bootids LBO 295.5 Theta Coronae Borealids TCB 296.0 37.7

Theta coronae borealids (TBC) Shower lasts for 18 days (CMOR)

Theta coronae borealids (TBC) Two potential parent bodies: (2003 EH1) A body with a slightly different orbit from the same complex might be the solution

Theta coronae borealids (TBC) Two potential parent bodies: (2003 EH1) 23P/Brorsen-Metcalf Only one outburst created a shower (∼9,000 yr) Needs to be traced further back in time 70 yr orbital period

North toroidal showers Name ID Solar Lon Vg [km/s] Parent Body Lambda Lyrids LLY 41.0 33.4 May Zeta Cyginids MZC 60.0 29.2 Alpha Lacertids ALA 105.5 38.3 Psi Cassiopeiids PCY 117.5 44.0 Lambda Draconids LDR 196.0 37.5 2003 QQ47 October Ursae Majorids OCU 204.7 52.0 Alpha Ursae Majorids AUM 209.0 35.6 2010 QE2 Xi Draconids XDR 210.8 35.8 2002 SU October Kappa Draconids OKD 216.0 37.3 November I Draconids NID 241.0 43.0 2009 WN25 Quadrantids QUA 283.5 41.7 2003 EH1 Canum Venaticids CVN 293.0 52.6 Lambda Bootids LBO 295.5 Theta Coronae Borealids TCB 296.0 37.7 (2003 EH1)/23P

North toroidal showers Name ID Solar Lon Vg [km/s] Parent Body Lambda Lyrids LLY 41.0 33.4 May Zeta Cyginids MZC 60.0 29.2 (2008 KP/2013 JA36) Alpha Lacertids ALA 105.5 38.3 Psi Cassiopeiids PCY 117.5 44.0 Lambda Draconids LDR 196.0 37.5 2003 QQ47 October Ursae Majorids OCU 204.7 52.0 (C/1975 T2 - SSM) Alpha Ursae Majorids AUM 209.0 35.6 2010 QE2 Xi Draconids XDR 210.8 35.8 2002 SU October Kappa Draconids OKD 216.0 37.3 November I Draconids NID 241.0 43.0 2009 WN25 Quadrantids QUA 283.5 41.7 2003 EH1 Canum Venaticids CVN 293.0 52.6 Lambda Bootids LBO 295.5 Theta Coronae Borealids TCB 296.0 37.7 2003 EH1/23P

Conclusions Out of 169 potential parent bodies only 9% is contributing to the north toroidal source

Conclusions Out of 169 potential parent bodies only 9% is contributing to the north toroidal source Age of many north toroidal streams for radar sized meteors is ≫ 10 000 yr

Conclusions Out of 169 potential parent bodies only 9% is contributing to the north toroidal source Age of many north toroidal streams for radar sized meteors is ≫ 10 000 yr We found promising parent body candidates for 5 north toroidal showers

Conclusions Out of 169 potential parent bodies only 9% is contributing to the north toroidal source Age of many north toroidal streams for radar sized meteors is ≫ 10 000 yr We found promising parent body candidates for 5 north toroidal showers The vast majority of the north toroidal flux is coming from today non-observable objects

Other pleasant by-products Promising parent body candidates for more than 75 meteor showers with currently unknown origin 40 of these showers with Σ<10 – very promising candidates Several parent body candidates for recently discovered south toroidal showers (Pokorny et al., 2016)