Presentation is loading. Please wait.

Presentation is loading. Please wait.

Kon-0.1100 - General information in Machine technology: Group 8 Environmental Aspects of Various Traffic Powertrain Options Special focus on Hybrids &

Similar presentations


Presentation on theme: "Kon-0.1100 - General information in Machine technology: Group 8 Environmental Aspects of Various Traffic Powertrain Options Special focus on Hybrids &"— Presentation transcript:

1 Kon-0.1100 - General information in Machine technology: Group 8 Environmental Aspects of Various Traffic Powertrain Options Special focus on Hybrids & EVs

2 Types of Powertrain NB: All stated efficiencies are “Tank to Wheel”, NOT “Well to wheel”. For EVs, implies “plug to wheel”, not “power plant to wheel” Fuel, technology or energy carrier CommentsEnergy carrier or primary fuel Suitability for different applications PetrolSI engine. 95E 10% ethanol in FI. Circa 30-35% efficiency. FuelPassenger cars BioethanolSI engine. +20-50% fuel consumption compared to equiv petrol engine. Can be mixed in petrol. Circa 25-35% efficiency. Food vs fuel issue. FuelPassenger cars DieselCI engine. Circa 40-45% efficiency.FuelPassenger cars, buses, trucks BiodieselCI engine. Performs same as diesel. Can be mixed in diesel. Circa 40- 45% efficiency. Food vs fuel FuelPassenger cars, buses, trucks Natural gasSI engine or dual fuel CI engine (pilot start on diesel). Tank is quite space consuming. Circa 30-35% efficiency (SI), 40-45% (CI) FuelPassenger cars (generally SI), buses, trucks (SI or CI)

3 Types of Powertrain (2) Fuel, technology or energy carrier CommentsEnergy carrier or primary fuel Suitability for different applications HydrogenFuel cell efficiency, 50-60% OR SI engine (same efficiency as petrol, BMW was interested),. Tank larger than petrol or diesel. Energy carrier Passenger cars, buses, truck possible but tank and fuel cell size is limiting factor but possible Hybrids, Plug-in hybrids Hybrid is petrol or diesel only but recover braking energy and e.g. uses electric motor in partial load conditions. Circa 50% total efficiency. Plug in hybrid also has chargeable battery and has significant electric only range. Petrol or diesel fuel (with main electricity for PHEV, i.e. energy carrier) Best in urban (lot of braking, idling) and variable load condition. Passenger cars, buses, light duty trucks, HGVs may be possible but need large battery to recover useful braking energy and tend to run in constant load conditions. Pure electric vehicle Battery and electric motor only. Battery energy density limits range (max circa 200km practical for current EV car technology). Circa 70% total system efficiency (small loses in charging, electric) Energy carrier Passenger cars, city buses, light commercial vehicle used in urban areas. NB: All stated efficiencies are “Tank to Wheel”, NOT “Well to wheel”. For EVs, implies “plug to wheel”, not “power plant to wheel”

4 Power train emission characteristics for passenger cars Fuel, technology or energy carrier CO (mg/km) Euro 5 limit NO x (mg/km) Euro 5 limit PM Euro 5 limit Average CO 2 (g/km). EU Target:130 g/km at 2015, 95 g/km at 2020 Comment Petrol1000605150 BioethanolAs per petrolRecycle of carbon dioxide, typical life cycle emission reduction of 50%+ over fossil petrol Diesel5001805141EU target (Euro 6 starts 2014): Reduce amount of nitrogen oxides, e.g. by selective cat reduction (SCR, urea(!) injection), already on trucks Biodiesel5001805Recycle of carbon dioxide typical life cycle emission reduction of 50%+ over fossil petrol Natural gas1000605129 (Opel Zafira Tourer), can be 80 for small car (Fiat Panda NG) Hydrogen – Fuel Cell NA Zero at vehicle. But lifecycle emission may vary from around 200 (hydrogen from natural gas reforming) to zero (hydrogen from electrolysis from RES- Electricity). Emission: water and some nitrogen oxides (more if hydrogen internal combustion engine rather than fuel cell) Hybrids, Plug- in hybrids (PHEV) As per petrol, but actual emissions much lower than normal petrol 104 (Toyota Prius Gen II), 90 (Prius Gen III), 50 (Prius Gen III PHEV, not include CO2 from electricity input) Pure electric vehicle NA Zero at vehicle. Lifecycle emissions around 100 for EU-27 average power plant CO2 factor of 400g/kWh and EV consumption of 0.25kWh/km). Zero if using RES or Nuclear electricity. No emissions in traffic, but while producing electricity.

5 EU’s targets EU’s target is to reduce emissions from 1990 levels by 20 % by 2020 EU’s target (CO2 emissions) for – a new passenger car is 130 g/km at 2015 95 g/km at 2020 –a new van is 175 g/km at 2017 147 g/km at 2020 EU is aiming to increase the share of the renewable energy to 20% of the final energy consumption by 2020

6 Arska is hydrogen guy too Oil is easy answer

7 Electric car Efficiency in electric cars is 85% (30-32%) when in petrol cars its 20-25% Energies that some batteries can hold: –Lead battery 20-40 Wh/kg –Lithium-ion battery 70-130 Wh/kg –Petrol can hold about 12 000 Wh/kg Companies are developing new and better batteries so electric cars can run longer Today most used batteries are lithium and lead batteries To load batteries it takes many hours but new technology is developing that can charge electric cars lot faster Electric cars with lead batteries can travel up to 100 km With new lithium-ion batteries cars can travel 160 km

8 Hybrids Hybrid electric vehicles (HEVs) use petroleum engine and at least one electric motor Petroleum engine produces energy for propulsion, other technical solutions recycle the energy Batteries store extra energy and electric motor transforms it to thrust Generative breaking and constant engine drive recharge batteries Other green solutions as automatic engine stop and start when not moving are also common in HEVs On low velocities all HEV’s thrust is provided by the electric motor Parallel use of engine and motor reduces fuel consumption and emissions

9 KERS =Kinetic Energy Recycling System Used in Formula 1 and other motor sports Energy can be stored either as –mechanical energy as in a flywheel –electrical energy as in a battery Extra 60 kW available for 6.67 seconds per lap  Benefit per lap is approximately 0.1 to 0.4 seconds Has a bad reputation because of high price tag for small gain, inreliability and electric shocks

10


Download ppt "Kon-0.1100 - General information in Machine technology: Group 8 Environmental Aspects of Various Traffic Powertrain Options Special focus on Hybrids &"

Similar presentations


Ads by Google