Presentation is loading. Please wait.

Presentation is loading. Please wait.

Cells Cell Structure and Function Photosynthesis Cellular Respiration Cell Growth and Division.

Similar presentations


Presentation on theme: "Cells Cell Structure and Function Photosynthesis Cellular Respiration Cell Growth and Division."— Presentation transcript:

1 Cells Cell Structure and Function Photosynthesis Cellular Respiration Cell Growth and Division

2 Cell Structure and Function (Chapter 7)

3 Life is Cellular  How did the Cell Theory develop? Cell Theory Guided Reading activity Know the contributions of the following scientists:  Robert Hooke (1665)  Anton van Leeuwenhoek (1674)  Matthias Schleiden (1838)  Theodor Schwann (1839)  Rudolph Virchow (1855)  Janet Plowe (1931)  Lynn Margulis (1970)

4 Prokaryotes vs. Eukaryotes  Prokaryotes =  Eukaryotes= Use my website to determine the major differences between eukaryotes and prokaryotes.

5 Cell Structures  Use the webquest on animal and plant cell organelles and their functions as notes for this section.  Go to my website, click on links, then click on “cells alive!”  Or go to for more information!http://www.cellsalive.com

6 The Compound Microscope  Review the microscope lab activity as notes for this section! Know the parts of the microscope and be able to accurately label a microscope diagram! Know how to make a wet mount slide!

7 Cellular Diversity  Protists: Webquest on “What are Protists?” Protista lab activity  Animal and Plant Cells: Observing Animal and Plant Cells lab activity

8 Protist Lab Video Clips  Paramecium: dY&NR=1&feature=fvwp dY&NR=1&feature=fvwp  Euglena: XLJ4Q&feature=related XLJ4Q&feature=related  Amoeba: dI&feature=related dI&feature=related

9 Levels of Organization in Multicellular Organisms  Use the Levels of Organization webquest as notes for this section.

10 Structure and Function Choose a cell type and research how it’s structure helps it function. 20 minute research activity:

11 Cells performing the same function often are similar in shape  Question: “How does the cell shape affect it’s function/allow it to function?”  Choose from one of these cell types: Neuron Red Blood Cell Cheek Epithelial Cell  Product Ideas: PowerPoint, Poster, graphic organizer, song, interpretive dance, model, acrostic poem, concept map

12 Neuron

13 Cheek Epithelial Cell

14 Red Blood Cell

15 Neuron Notes…

16 Cheek Epithelial Cell Notes…

17 Red Blood Cell Notes…

18 Homeostasis in the Human Body  Use the Homeostasis in the Human Body Webquest as notes for this section.

19 The Cell Membrane Structure and Function “Fluid Mosaic Model”

20 The Cell Membrane  Regulates what enters and leaves  Provides protection and support  Made up of:  Phospholipids (“lipid bilayer”)  Integral and Peripheral Proteins  Carbohydrate chains (glycoproteins)  Cholesterol

21 Cell membrane structure

22 Where are they found?  Found in: Nucleus Cell membrane Golgi apparatus endoplasmic reticulum lysosomes mitochondria (basically any membrane bound organelle!)

23 Structure  Lipid bilayer is made of the following: 2 types of proteins:  Integral proteins  Peripheral proteins 3 types of lipids:  Membrane Phospholipids  Membrane glycolipids  Cholesterol

24 Integral proteins  Transmembrane proteins (or integral proteins) Amphipathic = hydrophobic and hydrophilic regions

25 Peripheral proteins  Peripheral proteins linked at the cytoplasmic surface (by attachment to a fatty acid chain) linked at the external cell surface (attached by an oligosaccharide) may be bound to other membrane proteins

26 Membrane Phospholipids  These have a polar head group and two hydrocarbon tails  It is connected by glycerol to two fatty acid tails  One of the tails is a straight chain fatty acid (saturated). The other has a kink in the tail (unsaturated).

27

28

29 Membrane glycolipids  Glycolipids are also a constituent of membranes.  These components of the membrane may be protective, insulators, and sites of receptor binding.

30 Cholesterol  The amount of cholesterol may vary with the type of membrane.  Plasma membranes have nearly one cholesterol per phospholipid molecule.  Other membranes (like those around bacteria) have no cholesterol

31 Cholesterol (continued)  Function: This makes the lipid bilayer less deformable Without cholesterol (such as in a bacterium) a cell would need a cell wall. Also keeps the cell membrane from becoming too stiff.

32 Fluid Mosaic Model  Based on what you know about the structure and function of the cell membrane what does the fluid mosaic model mean?

33 Diffusion, Osmosis, and Active Transport Molecular Workbench Activity  Complete this online and use your analysis packets as additional notes. We will be completing this in class!

34 Movement Through the Membrane NO ENERGY (ATP) REQUIRED ENERGY (ATP) REQUIRED [high]  [low] [low]  [high]  Materials can move through the membrane by: Diffusion  Osmosis Facilitated Diffusion Active Transport  Protein Pumps  Endocytosis  Exocytosis

35 Diffusion  Requires no energy (ATP)  Moves from an area of High concentration  low concentration until dynamic equilibrium is reached.  Dynamic equilibrium activity  hanimat/transport/diffusion.swf hanimat/transport/diffusion.swf

36 Osmosis  A type of diffusion (no energy needed)  Allows water molecules to pass easily through the selectively permeable membrane.  Solution = solute + solvent Solute = sugar (or another dissolved substance)…CANNOT go through the membrane Solvent = water…CAN go through the membrane

37 Osmosis  ONLY water moves  The solute stays put on one side or the other  Water moves back and forth according to the concentration of water on each side of the membrane  hanimat/transport/osmosis.swf hanimat/transport/osmosis.swf

38 Osmotic Pressure  Isotonic solutions The 2 solutions have equal concentrations of solute and solvent.  Hypotonic solutions One solution has less solute and more water compared to the other solution.  Hypertonic solutions One solution has more solute and less water compared to the other solution.

39 What would happen?  What would happen if… You placed a selectively permeable membrane “bag” with a hypotonic solution into a beaker with a hypertonic solution?  Which way would the water flow?  What would happen to the bag?  What would happen to the beaker?  How do you know?  How could you test this?

40 Facilitated Diffusion  Diffusion with the help of transport proteins  No energy required  hanimat/transport/channel.swf hanimat/transport/channel.swf

41 Active Transport  Cell uses energy  Actively moves molecules to where they are needed  Movement from an area of low concentration to an area of high concentration  3 MAIN TYPES: 1. Protein pumps 2. Endocytosis (BULK TRANSPORT) 3. Exocytosis (BULK TRANSPORT)

42 Types of Active Transport 1. Protein Pumps -transport proteins that require energy to do work Example: Sodium / Potassium Pumps are important in nerve responses. mat/transport/secondary%20active%20transp ort.swf mat/transport/secondary%20active%20transp ort.swf Protein changes shape to move molecules: this requires energy!

43 Types of Active Transport 2. Endocytosis: taking bulky material into a cell Uses energy Cell membrane in-folds around food particle “cell eating” Forms food vacuole & digests food This is how white blood cells eat bacteria!

44 Types of Active Transport 3. Exocytosis: Forces material out of cell in bulk membrane surrounding the material fuses with cell membrane Cell changes shape – requires energy EX: Hormones or wastes released from cell mat/cellstructures/phagocitosis.swf mat/cellstructures/phagocitosis.swf

45 Photosynthesis

46 Energy and Life  Energy = ability to do work  Source of energy on Earth = sun  Autotrophs  use light energy from the sun (or other sources) to make food.  Heterotrophs  obtain energy from foods consumed.  Energy comes in many forms Light, heat, and electricity

47 ATP  “like a fully charged battery”  One of the principle chemical compounds that is used to store energy Adenosine triphosphate (ATP)

48 ADP  “like a ½ charged battery”  When energy is released from ATP  converts to ADP and a phosphate group

49

50 Using Biochemical Energy  Cells use this energy for: Mechanical work, chemical work, transport work Basically, all cellular processes  ATP in cells = good for only a few seconds of activity (not efficient storage) 1 molecule of glucose stores more than 90x’s the chemical energy of ATP Cells can generate ATP as needed from the glucose in carbohydrates consumed during feeding

51 Investigating Photosynthesis  Jan van Helmont Concludes plants gain most of their mass from water  Joseph Priestly Concludes that plants release a substance that keeps a candle burning (oxygen)  Jan Ingenhousz Concludes that plants produce oxygen bubbles in the light but not in the dark (they need sunlight).

52 Photosynthesis Equation

53 Light and Pigments Photosynthesis requires:  Light From sunlight (A mixture of different wavelengths of light)  Chlorophyll (a pigment found in chloroplasts that absorbs light energy) 2 main types:  Chlorophyll a (absorbs violet and red light)  Chlorophyll b (absorbs blue and red light)

54

55 Structure of a Chloroplast

56 NADPH  When sunlight hits chlorophyll a double bond is broken releasing a high energy electron.  This high energy electron requires a special carrier called NADP+.  Once the electron is combined with NADP+ it becomes NADPH.  NADPH carries this energy to other reactions around the cell.

57 Light-Dependent Reactions  Use energy from sunlight to produce Oxygen, ATP and NADPH.  Photosystem II is the first to absorb light (discovered after photosystem I) Light smashes high energy electrons out of the chlorophyll molecules which are carried to electron transport chains in the thylakoid membrane. The lost electrons from the chlorophyll molecule are replaced by breaking water molecules apart which releases oxygen.

58 Light-Dependent Reactions (Continued)  High energy electrons move from Photosystem II to photosystem I. Energy from this transport pumps H+ ions from the stroma into the inner thylakoid.  Pigments in photosystem I use sunlight to release additional high energy electrons and a H+ ion  becomes NADPH  Inside of thylakoid membrane becomes positively charged (from the H+ ions)/outside  negatively charged Charge difference allows ATP to be made.

59 Light-Dependent Reactions (Continued)  ATP formation= H+ ions move through a protein called ATP synthase. As it rotates the protein binds ADP with an additional phosphate to create ATP!

60

61 The Calvin Cycle: OR the light-independent reactions  ATP and NADPH from the light reactions are required to produce high-energy sugars.  Step 1: CO 2 enters the cycle and is combined with 6 5-Carbon molecules  forms 12 3-Carbon molecules  Step 2: Energy from ATP and NADPH are used to convert the 12 3-Carbon molecules into higher- energy forms

62 The Calvin Cycle: OR the light-independent reactions  Step 3: 2 3-Carbon molecules are used to make a 6-Carbon sugar (glucose!)  Step 4: The 10 remaining 3-Carbon molecules are converted back into 6 5- carbon molecules These are reused in the next cycle!!!

63

64 Factors affecting photosynthesis  Availability of Water Shortage of water can slow or stop photosynthesis  Temperature Plants function best between 0°C and 35°C (temperatures above or below may damage enzymes and slow or stop photosynthesis)  Intensity of light Increasing intensity increases rate of photosynthesis until maximum rate of photosynthesis is reached.

65 Photosynthesis Molecular Workbench  We will be completing this online together…Use your analysis packets as additional notes. We will be completing this in class!

66 Cellular Respiration

67 Chemical Pathways  Energy in food: Calorie = amount of energy needed to raise the temp. of 1 g of water 1°C Gradually release energy from glucose and other food compounds 2 Pathway for energy release  Aerobic (O 2 present)  Anaerobic (in the absence of O 2 )

68 Cellular Respiration Overview  Oxygen + glucose  carbon dioxide +water +energy  6O 2 + C 6 H 12 O 6  6CO 2 + 6H 2 O + ATP  3 main stages: Glycolysis The Krebs cycle (or “citric acid cycle”) Electron Transport Chain (or “oxidative phosphorylation”)

69 Glycolysis (glyco- = sweet; lysis = breaking)  Occurs in the cytoplasm near the mitochondion  No oxygen is required for glycolysis  1 molecule of glucose (6C) is broken into 2 molecules of pyruvic acid (3C) (pyruvate) Needs to use 2 ATP to get started Generates 4 ATP at the end Net ATP total = 2 ATP  Produces 4 molecules of NADH (high energy electron carrier)  transports to other reaction sites

70 What happens if there is no oxygen?  Fermentation! Cells convert NADH back into NAD + by passing electrons back to pyruvate Allows glycolysis to continue to produce ATP (not efficient) 2 main types:  Alcoholic Fermentation (bacteria and yeast)  Lactic Acid Fermentation (humans)

71 Alcoholic Fermentation  Yeasts and bacteria  Beer, wine, and bread production  Pyruvic acid + NADH  alcohol + CO 2 +NAD +  In bread: CO 2 makes the bread rise Alcohol is baked off

72 Lactic Acid Fermentation  Pyruvic acid is converted to lactic acid This regenerates NAD + so glycolysis can continue to generate ATP  Pyruvic acid + NADH  lactic acid + NAD +  Produced in the muscles when there is not enough O 2 causing burning/pain Example: Wall sit of death

73 What if there is oxygen present after glycolysis?  Krebs cycle and electron transport chain!!!  Most powerful electron acceptor = oxygen!!!  Uses the remaining 90% of energy still trapped in the glucose molecule after glycolysis!

74 The Krebs Cycle  Step # 1: Pyruvic acid enters the mitochodrion A carbon is removed forming CO 2 and electrons are removed forming NADH CO 2 is combined with coenzyme A and is transformed into acetyl-CoA Acetyl-CoA adds a 2-C acetyl group to a 4C compound forming citric acid.

75 The Krebs Cycle (continued)  Step # 2: Citric acid is broken down into a 5C compound then a 4C compound 2 molecules of CO2 are released, electrons form NADH and FADH2, and 1 ATP is generated From one molecule of pyruvic acid=  4 NADH, 1 FADH2, 1 ATP  But remember 2 molecules of pyruvic acid are made from each molecule of glucose!!! (so this process happens twice)

76

77

78 Electron Transport  The high energy electrons in FADH 2 and NADH from the Kreb’s cycle Are transported to the inner membrane of the mitochondrion In prokaryotes  ETC is in the cell membrane  The ETC uses the high energy electrons to make ATP

79 Electron Transport (continued)  High energy electrons are passed to a series of carrier proteins in the membrane As electrons move to each carrier, H+ ions are moved to the inner membrane space These will be used later to generate ATP via ATP synthase  At the end  an enzyme that combines the electrons with hydrogen ions and oxygen to form water

80 Energy Totals  Aerobic Respiration = 36 ATP Uses 38% of the total energy of a molecule of glucose The rest is released as heat (body heat!) More efficient than a gasoline car engine We are an efficient combustion engine!!!  Anaerobic Respiration = 2 ATP

81 Energy and Exercise  Quick energy  (a sprint) ATP is short-lived and is used right away Stored ATP  used in a few seconds of intense activity Then, ATP is generated via lactic acid fermentation

82 Energy and Exercise  Long-term energy  (marathon) For exercise longer than 90 seconds  cellular respiration is the only way to generate enough ATP to sustain activity. Stored energy = glycogen (breaks down into glucose and is stored in muscles)  Lasts only about minutes Once glycogen is depleted  body uses fat stores (good for weight loss!)

83 Linking to Homeostasis  Rate of Cellular Respiration Inquiry (RITES lab using BIOPACS) Heart Rate Monitor Design an experiment to test the rate of cellular respiration  How does cellular respiration work to maintain homeostasis in the human body? Include body systems in your response.

84 Comparing Cellular Respiration to Photosynthesis  Generate a chart comparing the following: PhotosynthesisCell Respiration Function Location Reactants Products Equation

85 Cellular Respiration Molecular Workbench  Complete this online and use your analysis packets as additional notes. We will be completing this in class!  TedX talk –Discovering ancient climates in oceans and ice: Rob Dunbar on TED.comDiscovering ancient climates in oceans and ice: Rob Dunbar on TED.com

86 Cell Growth and Division

87 Limits to Cell Size Activity  Draw an example of a town with the borders being the edges of the paper There is one main road into and out of the town. Think of a cell and the parts needed to run the cell.  Recreate these parts as parts of a town  Don’t forget: nutrients (food trucks) and waste (dump trucks)

88 Limits to Cell Size Activity  Increase the Population by THREE TIMES  What does this do to the demands put on the town?: What does this do to the Traffic? What does this do to the Waste and Nutrients? What does this do to the Resources needed to thrive? What does this do to the people who run the town?

89 Limits to Cell Size Activity Based on the activity…  What are the 2 limits to cell size?  What happens when a cell becomes too big?

90 Cell Growth  2 limits to cell size = 1. The larger the cell becomes the more demands the cell places on its DNA 2. The cell has difficulty moving nutrients and waste across the membrane  Thus the size of a cell is limited As the length of a cell increases…  Volume increases faster than its surface area

91 What happens when a cell gets too big?  IT DIVIDES!!!  Cell division 1 cell  2 daughter cells (exact copies of the original) Prokaryotes  easy  Circular DNA  copies then divides Eukaryotes  more involved  Complex DNA (23 pairs of chromosomes = 46 total)

92 The Cell Cycle  Average time = 16 – 20 hours

93 G1 Phase  Cell Growth Intense growth and activity Increases in size Synthesizes new proteins and organelles

94 The Cell Cycle

95 S Phase  DNA Synthesis Creates a duplicate set of chromosomes G 0 (or R on diagram) = Point of no return

96 Chromosome Structure “supercoils”

97 Human Chromosomes (Karyotype)

98 The Cell Cycle

99 G2 Phase  Preparation for Mitosis Shortest of the 3 phases of interphase (G1, S, and Gs) Organelles and proteins needed for cell division are produced.

100 The Cell Cycle

101 Mitosis  Prophase  Metaphase  Anaphase  Telophase  Cytokinesis

102 Prophase  Chromosomes condense (“appear”)  Nuclear envelope dissolves  Centrioles move to opposite sides (poles) of the cell

103

104 Metaphase  Centrioles send out spindle fibers that attach to the chromosomes  Chromosomes are lined up in the middle of the cell

105

106 Anaphase  Chromosomes (sister chromatids) are pulled apart and move to the poles.

107

108 Telophase/Cytokinesis  Occurs simultaneously  Telophase The nuclear envelope reforms around the chromosomes The chromosomes uncoil  Cytokinesis The cytoplasm divides 2 daughter cells are produced (each are exact copies of the original with 46 chromosomes)

109

110

111 What stages are these cells in?

112 Investigating Cell Reproduction  Complete the lab activity Paper lab

113 GO TO Meiosis PowerPoint

114 Regulating the Cell Cycle

115 Controls on Cell Division  Cell growth and division can be turned on and off  Example Cells in a petri dish will continue to grow until they come in contact with other cells. A cut in the skin will cause cells to divide until the wound in healed.

116

117 Cell Cycle Regulators  Cyclin Protein that regulates the cell cycle in eukaryotic cells When injected into a non-dividing cell it causes a mitotic spindle to form  Internal Regulators Responds to events inside the cell Makes sure that a cell does not enter mitosis until all chromosomes are replicated

118 Cell Cycle Regulators (cont.)  External Regulators Respond to events outside the cell “Growth factors” that speed up or slow down growth and division

119 Uncontrolled Cell Growth  CANCER – Cells that lose the ability to control cell growth Most cancers have damage to the p53 gene  Normally halts the cell cycle until all chromosomes are replicated  Chromosome damage builds up and the cancer cell loses the information that controls normal cell growth Tumors  masses of cells that can damage the surrounding tissue CAUSES: smoking tobacco, radiation exposure (UV, XRAY, etc.), viral infection

120 Life Spans of Various Human Cells Cell TypeLife SpanCell Division Lining of esophagus2-3 daysCan divide Lining of small intestine 1-2 daysCan divide Lining of large intestine 6 daysCan divide Red blood cellLess than 120 daysCannot divide White blood cell10 hours to decadesCannot divide Smooth muscleLong-livedCan divide Cardiac (heart) muscle Long-livedCannot divide Skeletal muscleLong-livedCannot divide Neuron (nerve cell)Long-livedMost do not divide

121 Life Spans of Human Cell Questions  White blood cells help protect the body from infection and disease-producing organisms. How might their function relate to their life span?  If cancer cells were added to the table, predict what would be written under the “Life Span” and “Cell Division” columns. Explain you’re the reasoning behind your predictions.


Download ppt "Cells Cell Structure and Function Photosynthesis Cellular Respiration Cell Growth and Division."

Similar presentations


Ads by Google