Presentation is loading. Please wait.

Presentation is loading. Please wait.

Supernova Neutrinos Physics Opportunities with

Similar presentations


Presentation on theme: "Supernova Neutrinos Physics Opportunities with"— Presentation transcript:

1 Supernova Neutrinos Physics Opportunities with
Crab Nebula Neutrinos in Cosmology, Astro, Particle & Nuclear Physics 16-24 September 2009, Erice, Sicily Physics Opportunities with Supernova Neutrinos Georg Raffelt, Max-Planck-Institut für Physik, München

2 Stellar Collapse and Supernova Explosion
Onion structure Main-sequence star Hydrogen Burning Collapse (implosion) Helium-burning star Helium Burning Hydrogen Degenerate iron core: r  109 g cm-3 T  K MFe  1.5 Msun RFe  8000 km

3 Stellar Collapse and Supernova Explosion
Newborn Neutron Star ~ 50 km Proto-Neutron Star r  rnuc = 3  g cm-3 T  30 MeV Collapse (implosion) Neutrino Cooling

4 Stellar Collapse and Supernova Explosion
Newborn Neutron Star ~ 50 km Proto-Neutron Star r  rnuc = 3  g cm-3 T  30 MeV Neutrino Cooling Gravitational binding energy Eb  3  1053 erg  17% MSUN c2 This shows up as 99% Neutrinos 1% Kinetic energy of explosion (1% of this into cosmic rays) 0.01% Photons, outshine host galaxy Neutrino luminosity Ln  3  1053 erg / 3 sec  3  1019 LSUN While it lasts, outshines the entire visible universe

5 Diffuse Supernova Neutrino Background (DSNB)
Supernova rate approximately 1 SN / 1010 LSun,B / 100 years Lsun,B = 0.54 Lsun = 2  1033 erg/s En ~ 3  1053 erg per core-collapse Core-collapse neutrino luminosity of typical galaxy comparable to photon luminosity (from nuclear burning) Core-collapse rate somewhat larger in the past. Estimated present-day flux ~ 10 cm-2 s-1 Pushing the boundaries of neutrino astronomy to cosmological distances Beacom & Vagins, hep-ph/ [Phys. Rev. Lett., 93:171101, 2004]

6 Realistic DSNB Estimate
Horiuchi, Beacom & Dwek, arXiv: v3

7 Sanduleak -69 202 Supernova 1987A 23 February 1987 Tarantula Nebula
Large Magellanic Cloud Distance 50 kpc ( light years)

8 Neutrino Signal of Supernova 1987A
Kamiokande-II (Japan) Water Cherenkov detector 2140 tons Clock uncertainty 1 min Irvine-Michigan-Brookhaven (US) Water Cherenkov detector 6800 tons Clock uncertainty 50 ms Baksan Scintillator Telescope (Soviet Union), 200 tons Random event cluster ~ 0.7/day Clock uncertainty +2/-54 s Within clock uncertainties, signals are contemporaneous

9 2002 Physics Nobel Prize for Neutrino Astronomy
Ray Davis Jr. ( ) Masatoshi Koshiba (*1926) “for pioneering contributions to astrophysics, in particular for the detection of cosmic neutrinos”

10 Gamow & Schoenberg, Phys. Rev. 58:1117 (1940)

11 Large Detectors for Supernova Neutrinos
MiniBooNE (200) LVD (400) Borexino (100) Baksan (100) Super-Kamiokande (104) KamLAND (400) In brackets events for a “fiducial SN” at distance 10 kpc IceCube (106)

12 Current and Near-Future SN Neutrino Detectors
Type Location Mass (kton) Events @ 8 kpc Status Super-K Water Japan 32 8000 Running (SK IV) LVD Scintillator Italy 1 300 Running KamLAND Borexino 0.3 100 IceCube Ice South Pole 0.4/PMT 1 million Baksan Russia 0.33 50 Mini-BOONE USA 0.7 200 HALO Lead Canada 0.076 85 Under construction Icarus Liquid argon 0.6 230 Almost ready NOnA 15 3000 Construction started SNO+ Funded Adapted from Kate Scholberg, TAUP 2009

13 Super-Kamiokande Neutrino Detector

14 Simulated Supernova Burst in Super-Kamiokande
Movie by C. Little, including work by S. Farrell & B. Reed, (Kate Scholberg’s group at Duke University)

15 IceCube Neutrino Telescope at the South Pole
1 km3 antarctic ice, instrumented with 4800 photomultipliers 59 of 80 strings installed (2009) Completion until 2011 foreseen

16 IceCube as a Supernova Neutrino Detector
Each optical module (OM) picks up Cherenkov light from its neighborhood. SN appears as “correlated noise”. About 300 Cherenkov photons per OM from a SN at 10 kpc Noise ~280 Hz Total of 4800 OMs foreseen in IceCube IceCube SN signal at 10 kpc, based on a numerical Livermore model [Dighe, Keil & Raffelt, hep-ph/ ] Method first discussed by Pryor, Roos & Webster, ApJ 329:355 (1988) Halzen, Jacobsen & Zas astro-ph/

17 Galactic Supernova Distance Distribution
Mirizzi, Raffelt, Serpico, astro-ph Average distance 10.7 kpc, rms dispersion 4.9 kpc (11.9 kpc and 6.0 kpc for SN Ia distribution)

18 The Red Supergiant Betelgeuse (Alpha Orionis)
First resolved image of a star other than Sun Distance (Hipparcos) 130 pc (425 lyr) If Betelgeuse goes Supernova: 6 107 neutrino events in Super-Kamiokande 2.4 103 neutron events per day from Silicon-burning phase (few days warning!), need neutron tagging [Odrzywolek, Misiaszek & Kutschera, astro-ph/ ]

19 Local Group of Galaxies
With megatonne class (30 x SK) 60 events from Andromeda Current best neutrino detectors sensitive out to few 100 kpc

20 Next Generation Large-Scale Detector Concepts
5-100 kton liquid Argon DUSEL LBNE 100 kton scale scintillator Hyper-K Memphys LENA HanoHano Megaton-scale water Cherenkov

21 Reaching Beyond the Milky Way: Five-Megaton Detector
Modular 5-Mt underwater detector for proton decay, long-baseline oscillation experiments, atmospheric neutrinos, and low-energy burst detection

22 Galactic Supernova Rate
Looking forward Galactic Supernova Rate

23 Core-Collapse SN Rate in the Milky Way
SN statistics in external galaxies Core-collapse SNe per century 1 2 3 4 5 6 7 8 9 10 van den Bergh & McClure (1994) Cappellaro & Turatto (2000) Gamma rays from 26Al (Milky Way) Diehl et al. (2006) Historical galactic SNe (all types) Strom (1994) Tammann et al. (1994) No galactic neutrino burst since 1980 90 % CL (25 y obserservation) Alekseev et al. (1993) References: van den Bergh & McClure, ApJ 425 (1994) 205. Cappellaro & Turatto, astro-ph/ Diehl et al., Nature 439 (2006) 45. Strom, Astron. Astrophys. 288 (1994) L1. Tammann et al., ApJ 92 (1994) 487. Alekseev et al., JETP 77 (1993) 339 and my update.

24 Observed SNe in the Local Universe (Past Decade)
Statistical Prediction Kistler,Yüksel, Ando, Beacom & Suzuki, arXiv:

25 High and Low Supernova Rates in Nearby Galaxies
M31 (Andromeda) D = 780 kpc NGC 6946 D = (5.5 ± 1) Mpc Last Observed Supernova: 1885A Observed Supernovae: 1917A, 1939C, 1948B, 1968D, 1969P, 1980K, 2002hh, 2004et, 2008S

26 SuperNova Early Warning System (SNEWS)
Supernova 1987A Early Light Curve Super-K IceCube Coincidence Server @ BNL Alert LVD Others ? Neutrino observation can alert astronomers several hours in advance to a supernova.

27 Probing Supernova Physics
Looking forward Probing Supernova Physics

28 Wilson, Proc. Univ. Illinois Meeting on Num. Astrophys.(1982)
Delayed Explosion Wilson, Proc. Univ. Illinois Meeting on Num. Astrophys.(1982) Bethe & Wilson, ApJ 295 (1985) 14

29 Standing Accretion Shock Instability (SASI)
Mezzacappa et al.,

30 Luminosity Variation Detectable in Neutrinos?
Polar direction Hemispheric average Neutrino events in 10 ms bins for SN (10 kpc) during accretion phase: Super-K s ~ 10% 30 x Super-K 2 s ~ 2% IceCube  s ~ 1% Detecting the spectrum of luminosity variations can Detect SASI instability in neutrinos Provide equation-of-state information Marek, Janka & Müller, arXiv:

31 Fourier Transform of Luminosity Variation
Approximate level of Poisson noise in IceCube for a SN at 10 kpc Polar direction Hemispheric average Detectability to be studied in more detail (Lund, Marek, Lunardini, Janka, Raffelt, Work in progress) Marek, Janka & Müller, arXiv:

32 Neutrino Mass and Resolution of Time Variations
Signal dispersion for Next Nearby SN IceCube binning of data: 1.64 ms in each OM Laboratory neutrino mass limit: 2.2 eV Cosmological limit Smn < 0.6 eV, so individual mass limit 0.2 eV KATRIN sensitivity roughly 0.2 eV For SN signal interpretation of fast time variations, it is important to have the cosmological limit and future KATRIN measurement/limit Supernova neutrino aficionados are new customers for KATRIN results!

33 Gravitational Waves from Core-Collapse Supernovae
Müller, Rampp, Buras, Janka, & Shoemaker, “Towards gravitational wave signals from realistic core collapse supernova models,” astro-ph/ Asymmetric neutrino emission Bounce Convection The gravitational-wave signal from convection is a generic and dominating feature

34 Neutrino Emission Around Bounce Time
Different Mass Neutrino Transport Nuclear EoS Prompt Neutronization Burst Kachelriess, Tomàs, Buras, Janka, Marek & Rampp, astro-ph /

35 Millisecond Bounce Time Reconstruction
Super-Kamiokande IceCube Emission model adapted to measured SN 1987A data “Pessimistic distance” of 20 kpc Determine bounce time to within a few tens of milliseconds Onset of neutrino emission 10 kpc Pagliaroli, Vissani, Coccia & Fulgione arXiv: Halzen & Raffelt arXiv:

36 Do Neutrinos Gravitate?
Neutrinos arrive a few hours earlier than photons  Early warning (SNEWS) SN 1987A: Transit time for photons and neutrinos equal to within ~ 3h Shapiro time delay for particles moving in a gravitational potential Longo, PRL 60:173,1988 Krauss & Tremaine, PRL 60:176,1988 Equal within ~ 10-3 Proves directly that neutrinos respond to gravity in the usual way because for photons gravitational lensing already proves this point Cosmological limits DNn ≲ 1 much worse test of neutrino gravitation Provides limits on parameters of certain non-GR theories of gravitation

37 Particle Physics Bounds
Looking forward Particle Physics Bounds

38 The Energy-Loss Argument
Neutrino sphere SN 1987A neutrino signal Neutrino diffusion Late-time signal most sensitive observable Emission of very weakly interacting particles would “steal” energy from the neutrino burst and shorten it. (Early neutrino burst powered by accretion, not sensitive to volume energy loss.) Volume emission of novel particles

39 New Long-Term Cooling Calculations
Fischer et al. (Basel Group), arXiv:

40 Neutrino Flavor Oscillations
Looking forward Neutrino Flavor Oscillations

41 Neutrino Emission Around Bounce Time
Different Mass Neutrino Transport Nuclear EoS Prompt Neutronization Burst Kachelriess, Tomàs, Buras, Janka, Marek & Rampp, astro-ph /

42 Flavor Dependence of Neutrino Emission
Fischer et al. (Basel Group), arXiv:

43 Flavor-Dependent Neutrino Fluxes vs. Equation of State
Wolff & Hillebrandt nuclear EoS (stiff) Lattimer & Swesty nuclear EoS (soft) Kitaura, Janka & Hillebrandt, “Explosions of O-Ne-Mg cores, the Crab supernova, and subluminous Type II-P supernovae”, astro-ph/

44 Level-Crossing Diagram in a SN Envelope
Normal mass hierarchy Inverted mass hierarchy Dighe & Smirnov, Identifying the neutrino mass spectrum from a supernova neutrino burst, astro-ph/

45 Spectra Emerging from a Supernova
Primary fluxes for After leaving the supernova envelope, the fluxes are partially swapped Normal Inverted sin2(2Q13) ≲ 10-5 ≳ 10-3 Any Mass ordering sin2(Q12) cos2(Q12) Case A B C Survival probability

46 Collective Effects in Neutrino Flavor Oscillations
Collapsed supernova core or accretion torus of merging neutron stars: Neutrino flux very dense: Up to 1035 cm-3 Neutrino-neutrino interaction energy much larger than vacuum oscillation frequency Large “matter effect” of neutrinos on each other Non-linear oscillation effects Assume 80% anti-neutrinos Vacuum oscillation frequency w = 0.3 km-1 Neutrino-neutrino interaction energy at nu sphere (r = 10 km) m = 0.3105 km-1 Falls off approximately as r-4 (geometric flux dilution and nus become more co-linear)

47 Collective SN Neutrino Oscillations since 2006
Two seminal papers in 2006 triggered a torrent of activities Duan, Fuller, Qian, astro-ph/ , Duan et al. astro-ph/ Duan, Fuller, Carlson & Qian, astro-ph/ , , arXiv: , Duan, Fuller & Qian, arXiv: , , Duan, Fuller & Carlson, arXiv: Duan & Kneller, arXiv: Hannestad, Raffelt, Sigl & Wong, astro-ph/ Balantekin & Pehlivan, astro-ph/ Balantekin, Gava & Volpe, arXiv: Gava & Volpe, arXiv: Gava, Kneller, Volpe & McLaughlin, arXiv: Raffelt & Sigl, hep-ph/ Raffelt & Smirnov, arXiv: , Esteban-Pretel, Pastor, Tomàs, Raffelt & Sigl, arXiv: , Esteban-Pretel, Mirizzi, Pastor, Tomàs, Raffelt, Serpico & Sigl, arXiv: Raffelt, arXiv: Fogli, Lisi, Marrone & Mirizzi, arXiv: Fogli, Lisi, Marrone & Tamborra, arXiv: , Lunardini, Müller & Janka, arXiv: Dasgupta & Dighe, arXiv: Dasgupta, Dighe & Mirizzi, arXiv: Dasgupta, Dighe, Mirizzi & Raffelt, arXiv: , Dasgupta, Dighe, Raffelt & Smirnov, arXiv: Sawyer, arXiv: Chakraborty, Choubey, Dasgupta & Kar, arXiv: Blennow, Mirizzi & Serpico, arXiv: Wei Liao, arXiv: ,

48 General Equations of Motion
Vacuum oscillations M is neutrino mass matrix Note opposite sign between neutrinos and antineutrinos Usual matter effect with Nonlinear nu-nu effects are important when nu-nu interaction energy exceeds typical vacuum oscillation frequency (Do not compare with matter effect!)

49 Oscillations of Neutrinos plus Antineutrinos in a Box
Equal and densities, single energy E, with Equal self terms Opposite vacuum oscillations “Pendulum in flavor space” Inverted mass hierarchy  Inverted pendulum  Unstable even for small mixing angle Normal mass hierarchy  Small-amplitude oscillations

50 Flavor Conversion in Toy Supernova
Assume 80% anti-neutrinos Vacuum oscillation frequency w = 0.3 km-1 Neutrino-neutrino interaction energy at nu sphere (r = 10 km) m = 0.3105 km-1 Falls off approximately as r-4 (geometric flux dilution and nus become more co-linear) Pendular Oscillations Decline of oscillation amplitude explained in pendulum analogy by inreasing moment of inertia (Hannestad, Raffelt, Sigl & Wong astro-ph/ )

51 Spectral Split for Accretion Phase Example
Initial fluxes at nu sphere After collective trans- formation For explanation see Raffelt & Smirnov arXiv: Duan, Fuller, Carlson & Qian arXiv: Fogli et al., arXiv: ,

52 Multiple Spectral Splits (Cooling-Phase Example)
Inverted Hierarchy Normal Hierarchy Dasgupta, Dighe, Raffelt & Smirnov, arXiv:

53 Multiple Spectral Splits in the w Variable
Given is the flux spectrum f(E) for each flavor Use w = Dm2/2E to label modes Label anti-neutrinos with -w Define “spectrum” as Neutrinos Antineutrinos Swaps develop around every “positive” spectral crossing Each swap flanked by two splits antineutrinos neutrinos Dasgupta, Dighe, Raffelt & Smirnov, arXiv:

54 Flavor Pendulum Single “positive” crossing
(potential energy at a maximum) Single “negative” crossing (potential energy at a minimum) Dasgupta, Dighe, Raffelt & Smirnov, arXiv: For movies see

55 Decreasing Neutrino Density
Certain initial neutrino density Four times smaller initial neutrino density Dasgupta, Dighe, Raffelt & Smirnov, arXiv: For movies see

56 Supernova Cooling-Phase Example
Normal Hierarchy Inverted Hierarchy Dasgupta, Dighe, Raffelt & Smirnov, arXiv: For movies see

57 Multiple Spectral Splits (Cooling-Phase Example)
Inverted Hierarchy Normal Hierarchy Dasgupta, Dighe, Raffelt & Smirnov, arXiv:

58 Questions and Opportunities
Self-induced collective oscillations occur even for very small 13-mixing (instability!) Observation of spectral split or swap indication can provide signature for mass hierarchy and nontrivial neutrino propagation dynamics Do matter-density fluctuations have any realistic impact? Theoretical understanding and role of “multi-angle effects” largely missing

59 Spectral Split (Accretion-Phase Example)
Initial fluxes at neutrino sphere After collective trans- formation For explanation see Raffelt & Smirnov arXiv: Duan, Fuller, Carlson & Qian arXiv: Fogli, Lisi, Marrone & Mirizzi, arXiv:

60 Distinguishing Mixing Scenarios
Hierarchy sin2 Q13 Survival Probability Earth effects E < Esplit E > Esplit Normal ≳ 10-3 cos2 Q12 Inverted sin2 Q12 Normal ≲ 10-5 sin2 Q12 Inverted - Assuming “standard” flux spectra leading to a single split Probably generic for accretion phase Adapted from Dighe, arXiv:

61 Mass Hierarchy at Extremely Small Theta-13
Using Earth matter effects to diagnose transformations Ratio of spectra in two water Cherenkov detectors (0.4 Mton), one shadowed by the Earth, the other not Dasgupta, Dighe & Mirizzi, arXiv:

62 Diagnosing Collective Transformations
Assuming the mass ordering is measured to be inverted in the lab, the presence or absence of Earth effects distinguishes between the presence or not of collective transformations Collective Transformations No Yes Hierarchy sin2 Q13 survival probability Earth effects survival probability Earth effects Normal ≳ 10-3 cos2 Q12 Yes cos2 Q12 Yes Inverted No Normal ≲ 10-5 cos2 Q12 Yes Inverted No

63 What exactly will be learnt from the neutrinos
Looking forward What exactly will be learnt from the neutrinos of the next nearby SN depends a lot on what exactly is observed

64 SN neutrinos are powerful astrophysical
Looking forward SN neutrinos are powerful astrophysical and particle-physics messengers


Download ppt "Supernova Neutrinos Physics Opportunities with"

Similar presentations


Ads by Google