Presentation is loading. Please wait.

Presentation is loading. Please wait.

Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay SN 1006 Georg Raffelt, Max-Planck-Institut für.

Similar presentations


Presentation on theme: "Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay SN 1006 Georg Raffelt, Max-Planck-Institut für."— Presentation transcript:

1 Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay SN 1006 Georg Raffelt, Max-Planck-Institut für Physik, München 25 ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Frontiers of Low-Energy Neutrino Astronomy: Earth, Sun and Supernovae

2 Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Where do Neutrinos Appear in Nature? Astrophysical Accelerators Soon ? Cosmic Big Bang (Today 330 /cm 3 ) Indirect Evidence Indirect Evidence Nuclear Reactors Particle Accelerators Particle Accelerators Earth Atmosphere (Cosmic Rays) Sun Supernovae (Stellar Collapse) SN 1987A SN 1987A Earth Crust (NaturalRadioactivity)

3 Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Neutrinos from nuclear reactions: Energies 1 20 MeV Beam dump neutrinos High-energy protons hit High-energy protons hit matter or photons matter or photons Produce secondary Produce secondary Neutrinos from pion Neutrinos from pion decay decay e e e e Energies GeV Energies GeV Quasi thermal sources Supernova: T ~ few MeV Big-Bang Neutrinos: Very small energies today (cosmic red shift) Like matter today Where do Neutrinos Appear in Nature?

4 Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Low-energy neutrino astronomy (including geo-neutrinos) Energies ~ 1 50 MeV High-energy neutrino astronomy Closely related to cosmic-ray physics Long-baseline neutrino oscillation experiments with Reactor neutrinos Reactor neutrinos Neutrino beams from Neutrino beams from accelerators accelerators Where do Neutrinos Appear in Nature?

5 Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Hans Bethe (1906 2005, Nobel prize 1967) Thermonuclear reaction chains (1938) Neutrinos from the Sun Solar radiation: 98 % light 2 % neutrinos 2 % neutrinos At Earth 66 billion neutrinos/cm 2 sec Reaction-chains Energy 26.7 MeV Helium

6 Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Bethes Classic Paper on Nuclear Reactions in Stars No neutrinos from nuclear reactions in 1938 …

7 Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Gamow & Schoenberg, Phys. Rev. 58:1117 (1940)

8 Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Sun Glasses for Neutrinos? Several light years of lead Several light years of lead needed to shield solar needed to shield solar neutrinos neutrinos Bethe & Peierls 1934: Bethe & Peierls 1934: … this evidently means … this evidently means that one will never be able that one will never be able to observe a neutrino. to observe a neutrino. 8.3 light minutes

9 Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay First Detection (1954 - 1956) Fred Reines (1918 – 1998) Nobel prize 1995 Clyde Cowan (1919 – 1974) Detector prototype Anti-ElectronNeutrinosfromHanford Nuclear Reactor 3 Gammas in coincidence pp nn CdCd e+e+e+e+ e+e+e+e+ e-e-e-e- e-e-e-e-

10 Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Inverse beta decay of chlorine 600 tons of Perchloroethylene Homestake solar neutrino Homestake solar neutrino observatory (1967 2002) observatory (1967 2002) First Measurement of Solar Neutrinos

11 Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Cherenkov Effect Water Elastic scattering or CC reaction Neutrino LightLight Cherenkov Ring Electron or Muon (Charged Particle) Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay

12 Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Super-Kamiokande: Sun in the Light of Neutrinos Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay

13 Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay 2002 Physics Nobel Prize for Neutrino Astronomy Ray Davis Jr. (1914 2006) Masatoshi Koshiba (*1926) for pioneering contributions to astrophysics, in particular for the detection of cosmic neutrinos particular for the detection of cosmic neutrinos

14 Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay John Bahcall 1934 2005 Raymond Davis Jr. 1914 2006 Missing Neutrinos from the Sun Homestake Chlorine 7 Be 8B8B8B8B CNO Measurement (1970 – 1995) Calculation of expected experimental counting rate from various source reactions

15 Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Neutrino Flavor Oscillations Two-flavor mixing Bruno Pontecorvo (1913 – 1993) Invented nu oscillations Each mass eigenstate propagates as with Phase difference implies flavor oscillations OscillationLength sin 2 (2 ) Probability e Probability e z

16 Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Missing Neutrinos from the Sun Homestake 7 Be 8B8B8B8B CNO Chlorine Gallex/GNOSAGE CNO pp 8B8B8B8B Gallium Electron-Neutrino Detectors (Super-)Kamiokande 8B8B8B8B Water e + e e + e e + e e + e SNO 8B8B8B8B e + d p + p + e e + d p + p + e Heavy Water 8B8B8B8B + d p + n + + d p + n + Heavy Water All Flavors SNO 8B8B8B8B Water + e + e + e + e

17 Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Three-Flavor Neutrino Parameters CP-violating phase CP-violating phase Solar 75 92 Atmospheric 1400 3000 CHOOZSolar/KamLAND 2 ranges hep-ph/0405172Atmospheric/K2K e e 1 SunNormal2 3 Atmosphere e e 1 SunInverted2 3 Atmosphere Tasks and Open Questions Precision for 12 and 23 Precision for 12 and 23 How large is 13 ? How large is 13 ? CP-violating phase ? CP-violating phase ? Mass ordering ? Mass ordering ? (normal vs inverted) (normal vs inverted) Absolute masses ? Absolute masses ? (hierarchical vs degenerate) (hierarchical vs degenerate) Dirac or Majorana ? Dirac or Majorana ?

18 Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Solar Neutrino Spectrum 7-Be line measured by Borexino (2007)

19 Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Solar Neutrino Spectroscopy with BOREXINO Neutrino electron scattering Neutrino electron scattering Liquid scintillator technology Liquid scintillator technology (~ 300 tons) (~ 300 tons) Low energy threshold Low energy threshold (~ 60 keV) (~ 60 keV) Online since 16 May 2007 Online since 16 May 2007 Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Expected without flavor oscillationsExpected without flavor oscillations 75 ± 4 counts/100t/d Expected with oscillationsExpected with oscillations 49 ± 4 counts/100t/d BOREXINO result (May 2008)BOREXINO result (May 2008) 49 ± 3 stat ± 4 sys cnts/100t/d arXiv:0805.3843 (25 May 2008) arXiv:0805.3843 (25 May 2008)

20 Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Next Steps in Borexino Collect more statistics of Beryllium line Collect more statistics of Beryllium line Seasonal variation of rate Seasonal variation of rate (Earth orbit eccentricity) (Earth orbit eccentricity) Measure neutrinos from the CNO reaction chain Measure neutrinos from the CNO reaction chain Information about solar metal abundance Information about solar metal abundance Measure geo-neutrinos Measure geo-neutrinos (from natural radioactivity in the Earth crust) (from natural radioactivity in the Earth crust) Approx. 7 17 events/year Approx. 7 17 events/year Main background: Reactors ~ 20 events/year Main background: Reactors ~ 20 events/year

21 Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Geo Neutrinos: Why and What? We know surprisingly little about the interior of the Earth: Deepest bore hole ~ 12 km Deepest bore hole ~ 12 km Samples from the crust are Samples from the crust are available for chemical analysis available for chemical analysis (e.g. vulcanoes) (e.g. vulcanoes) Seismology reconstructs density Seismology reconstructs density profile throughout the Earth profile throughout the Earth Heat flow from measured Heat flow from measured temperature gradients 30 44 TW temperature gradients 30 44 TW (BSE canonical model, based on (BSE canonical model, based on cosmochemical arguments, cosmochemical arguments, predicts ~ 19 TW from crust and predicts ~ 19 TW from crust and mantle, none from core) mantle, none from core) Neutrinos escape freely Neutrinos escape freely Carry information about chemical composition, radioactive heat production, Carry information about chemical composition, radioactive heat production, or even a putative natural reactor at the core or even a putative natural reactor at the core

22 Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Expected Geo Neutrino Fluxes S. Dye, Talk 5/25/2006 Baltimore

23 Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Geo Neutrinos Predicted geo neutrino flux Reactor background KamLAND scintillator detector (1 kton)

24 Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Kamland Observation of Geoneutrinos First tentative observation of geoneutrinos First tentative observation of geoneutrinos at Kamland in 2005 (~ 2 sigma effect) at Kamland in 2005 (~ 2 sigma effect) Very difficult because of large background Very difficult because of large background of reactor neutrinos of reactor neutrinos (is main purpose for neutrino oscillations) (is main purpose for neutrino oscillations)

25 Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Sanduleak 69 202 Large Magellanic Cloud Distance 50 kpc (160.000 light years) Tarantula Nebula Supernova 1987A 23 February 1987 Supernova 1987A 23 February 1987 Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay

26 Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Supernova Neutrinos 20 Jahre nach SN 1987A Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay

27 Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Helium-burning star HeliumBurning HydrogenBurning Main-sequence star Hydrogen Burning Onion structure Degenerate iron core: 10 9 g cm 3 10 9 g cm 3 T 10 10 K T 10 10 K M Fe 1.5 M sun M Fe 1.5 M sun R Fe 8000 km R Fe 8000 km Collapse (implosion) Stellar Collapse and Supernova Explosion

28 Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Collapse (implosion) Explosion Newborn Neutron Star ~ 50 km Proto-Neutron Star nuc 3 10 14 g cm 3 nuc 3 10 14 g cm 3 T 30 MeV NeutrinoCooling Stellar Collapse and Supernova Explosion

29 Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Newborn Neutron Star ~ 50 km Proto-Neutron Star nuc 3 10 14 g cm 3 nuc 3 10 14 g cm 3 T 30 MeV NeutrinoCooling Gravitational binding energy Gravitational binding energy E b 3 10 53 erg 17% M SUN c 2 E b 3 10 53 erg 17% M SUN c 2 This shows up as This shows up as 99% Neutrinos 99% Neutrinos 1% Kinetic energy of explosion 1% Kinetic energy of explosion (1% of this into cosmic rays) (1% of this into cosmic rays) 0.01% Photons, outshine host galaxy 0.01% Photons, outshine host galaxy Neutrino luminosity Neutrino luminosity L 3 10 53 erg / 3 sec L 3 10 53 erg / 3 sec 3 10 19 L SUN 3 10 19 L SUN While it lasts, outshines the entire While it lasts, outshines the entire visible universe visible universe Stellar Collapse and Supernova Explosion

30 Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Neutrino Signal of Supernova 1987A Within clock uncertainties, signals are contemporaneous Kamiokande-II (Japan) Water Cherenkov detector 2140 tons Clock uncertainty 1 min Irvine-Michigan-Brookhaven (US) Water Cherenkov detector 6800 tons Clock uncertainty 50 ms Baksan Scintillator Telescope (Soviet Union), 200 tons Random event cluster ~ 0.7/day Clock uncertainty +2/-54 s

31 Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay The Energy-Loss Argument Neutrinosphere Neutrino Neutrino diffusion diffusion Late-time signal most sensitive observable Emission of very weakly interacting particles would steal energy from the neutrino burst and shorten it. (Early neutrino burst powered by accretion, not sensitive to volume energy loss.) not sensitive to volume energy loss.) Volume emission Volume emission of novel particles of novel particles SN 1987A neutrino signal

32 Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Do Neutrinos Gravitate? Neutrinos arrive a few hours earlier than photons Early warning (SNEWS) SN 1987A: Transit time for photons and neutrinos equal to within ~ 3h Equal within ~ 1 4 10 3 Shapiro time delay for particles moving in a gravitational potential Longo, PRL 60:173,1988 Krauss & Tremaine, PRL 60:176,1988 Proves directly that neutrinos respond to gravity in the usual way Proves directly that neutrinos respond to gravity in the usual way because for photons gravitational lensing already proves this point because for photons gravitational lensing already proves this point Cosmological limits N 1 much worse test of neutrino gravitation Cosmological limits N 1 much worse test of neutrino gravitation Provides limits on parameters of certain non-GR theories of gravitation Provides limits on parameters of certain non-GR theories of gravitation

33 Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Neutrino-Driven Delayed Explosion Picture adapted from Janka, astro-ph/0008432 Picture adapted from Janka, astro-ph/0008432 Neutrino heating increases pressure behind shock front

34 Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Standing Accretion Shock Instability (SASI) Mezzacappa et al., http://www.phy.ornl.gov/tsi/pages/simulations.html Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay

35 Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Large Detectors for Supernova Neutrinos Super-Kamiokande (10 4 ) KamLAND (400) MiniBooNE(200) In brackets events for a fiducial SN at distance 10 kpc LVD (400) Borexino (100) IceCube (10 6 ) Baksan Baksan (100) (100)

36 Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Simulated Supernova Signal at Super-Kamiokande Simulation for Super-Kamiokande SN signal at 10 kpc, based on a numerical Livermore model [Totani, Sato, Dalhed & Wilson, ApJ 496 (1998) 216] AccretionPhase Kelvin-Helmholtz Cooling Phase

37 Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay IceCube Neutrino Telescope at the South Pole 1 km 3 antarctic ice, instrumented 1 km 3 antarctic ice, instrumented with 4800 photomultipliers with 4800 photomultipliers 40 of 80 strings installed (2008) 40 of 80 strings installed (2008) Completion until 2011 foreseen Completion until 2011 foreseen

38 Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay IceCube as a Supernova Neutrino Detector Each optical module (OM) picks up Cherenkov light from its neighborhood. SN appears as correlated noise. About 300 About 300 Cherenkov Cherenkov photons photons per OM per OM from a SN from a SN at 10 kpc at 10 kpc Noise Noise per OM per OM < 260 Hz < 260 Hz Total of Total of 4800 OMs 4800 OMs in IceCube in IceCube IceCube SN signal at 10 kpc, based on a numerical Livermore model [Dighe, Keil & Raffelt, hep-ph/0303210] Method first discussed by Pryor, Roos & Webster, Pryor, Roos & Webster, ApJ 329:355 (1988) ApJ 329:355 (1988) Halzen, Jacobsen & Zas Halzen, Jacobsen & Zas astro-ph/9512080 astro-ph/9512080

39 Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Neutrino Oscillations in Matter Level crossing possible in a medium with a gradient (MSW effect) Level crossing possible in a medium with a gradient (MSW effect) - For solar nus large flavor conversion anyway due to large mixing - For solar nus large flavor conversion anyway due to large mixing - Still important for 13-oscillations in supernova envelope - Still important for 13-oscillations in supernova envelope Breaks degeneracy between and /2 (dark vs light side) Breaks degeneracy between and /2 (dark vs light side) - 12 mass ordering for solar nus established - 12 mass ordering for solar nus established - 13 mass ordering (normal vs inverted) at future LBL or SN - 13 mass ordering (normal vs inverted) at future LBL or SN Discriminates against sterile nus in atmospheric oscillations Discriminates against sterile nus in atmospheric oscillations CP asymmetry in LBL, to be distinguished from intrinsic CP violation CP asymmetry in LBL, to be distinguished from intrinsic CP violation Prevents flavor conversion in a SN core and within shock wave Prevents flavor conversion in a SN core and within shock wave Strongly affects sterile nu production in SN or early universe Strongly affects sterile nu production in SN or early universe Lincoln Wolfenstein f Z W, Z f Neutrinos in a medium suffer flavor-dependent refraction (PRD 17:2369, 1978)

40 Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay H- and L-Resonance for MSW Oscillations R. Tomàs, M. Kachelriess, G. Raffelt, A. Dighe, H.-T. Janka & L. Scheck: Neutrino signatures of supernova forward and reverse shock propagation [astro-ph/0407132] Resonance density for Resonance

41 Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Shock-Wave Propagation in IceCube Choubey, Harries & Ross, Probing neutrino oscillations from supernovae shock waves via the IceCube detector, astro-ph/0604300 Normal Hierarchy Inverted Hierarchy No shockwave Inverted Hierarchy Forward shock Inverted Hierarchy Forward & reverse shock

42 Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Collective Effects in Neutrino Flavor Oscillations Collapsed supernova core or accretion torus of merging neutron stars: Neutrino flux very dense: Up to 10 35 cm 3 Neutrino flux very dense: Up to 10 35 cm 3 Neutrino-neutrino interaction energy Neutrino-neutrino interaction energy much larger than vacuum oscillation frequency much larger than vacuum oscillation frequency Large matter effect of neutrinos on each Large matter effect of neutrinos on each other other Non-linear oscillation effects Non-linear oscillation effects Assume 80% anti-neutrinos Assume 80% anti-neutrinos Vacuum oscillation frequency Vacuum oscillation frequency = 0.3 km 1 = 0.3 km 1 Neutrino-neutrino interaction Neutrino-neutrino interaction energy at nu sphere (r = 10 km) energy at nu sphere (r = 10 km) = 0.3 10 5 km 1 = 0.3 10 5 km 1 Falls off approximately as r 4 Falls off approximately as r 4 (geometric flux dilution and nus (geometric flux dilution and nus become more co-linear) become more co-linear)

43 Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Spectral Split (Stepwise Spectral Swapping) Fogli, Lisi, Marrone & Mirizzi, arXiv:0707.1998 Initial fluxes at nu sphere Aftercollectivetrans-formation For explanation see Raffelt & Smirnov arXiv:0705.1830 arXiv:0705.1830 arXiv:0709.4641 arXiv:0709.4641 Duan, Fuller, Carlson & Qian arXiv:0706.4293 arXiv:0706.4293 arXiv:0707.0290 arXiv:0707.0290

44 Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Mass Hierarchy at Extremely Small Theta-13 Dasgupta, Dighe & Mirizzi, arXiv:0802.1481 Ratio of spectra in two water Cherenkov detectors (0.4 Mton), one shadowed by the Earth, the other not Using Earth matter effects to diagnose transformations

45 Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Collective SN neutrino oscillations 2006-2008 (I) Bipolar collective transformations important, even for dense matter Duan, Fuller & Qian Duan, Fuller & Qian astro-ph/0511275 astro-ph/0511275 Numerical simulations Including multi-angle effects Including multi-angle effects Discovery of spectral splits Discovery of spectral splits Duan, Fuller, Carlson & Qian Duan, Fuller, Carlson & Qian astro-ph/0606616, 0608050 astro-ph/0606616, 0608050 Pendulum in flavor space Pendulum in flavor space Collective pair annihilation Collective pair annihilation Pure precession mode Pure precession mode Hannestad, Raffelt, Sigl & Wong Hannestad, Raffelt, Sigl & Wong astro-ph/0608695 astro-ph/0608695 Duan, Fuller, Carlson & Qian Duan, Fuller, Carlson & Qian astro-ph/0703776 astro-ph/0703776 Self-maintained coherence vs. self-induced decoherence caused by multi-angle effects Sawyer, hep-ph/0408265, 0503013 Sawyer, hep-ph/0408265, 0503013 Raffelt & Sigl, hep-ph/0701182 Raffelt & Sigl, hep-ph/0701182 Esteban-Pretel, Pastor, Tomàs, Esteban-Pretel, Pastor, Tomàs, Raffelt & Sigl, arXiv:0706.2498 Raffelt & Sigl, arXiv:0706.2498 Theory of spectral splits in terms of adiabatic evolution in rotating frame Raffelt & Smirnov, Raffelt & Smirnov, arXiv:0705.1830, 0709.4641 arXiv:0705.1830, 0709.4641 Duan, Fuller, Carlson & Qian Duan, Fuller, Carlson & Qian arXiv:0706.4293, 0707.0290 arXiv:0706.4293, 0707.0290 Independent numerical simulations Fogli, Lisi, Marrone & Mirizzi Fogli, Lisi, Marrone & Mirizzi arXiv:0707.1998 arXiv:0707.1998

46 Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Collective SN neutrino oscillations 2006-2008 (II) Second-order mu-tau refractive effect important in three-flavor context Esteban-Pretel, Pastor, Tomàs, Esteban-Pretel, Pastor, Tomàs, Raffelt & Sigl, arXiv:0712.1137 Raffelt & Sigl, arXiv:0712.1137 Three-flavor effects in O-Ne-Mg SNe on neutronization burst (MSW-prepared spectral double split) Duan, Fuller, Carlson & Qian, Duan, Fuller, Carlson & Qian, arXiv:0710.1271 arXiv:0710.1271 Dasgupta, Dighe, Mirrizzi & Raffelt, Dasgupta, Dighe, Mirrizzi & Raffelt, arXiv:0801.1660 arXiv:0801.1660 Theory of three-flavor collective oscillations Dasgupta & Dighe, Dasgupta & Dighe, arXiv:0712.3798 arXiv:0712.3798 Identifying the neutrino mass hierarchy at extremely small Theta-13 Dasgupta, Dighe & Mirizzi, Dasgupta, Dighe & Mirizzi, arXiv:0802.1481 arXiv:0802.1481 Formulation for non-spherical geometry Dasgupta, Dighe, Mirizzi & Raffelt Dasgupta, Dighe, Mirizzi & Raffelt arXiv:0805.3300 arXiv:0805.3300 Many theoretical questions for this neutrino many-body system remain unresolved !

47 Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Core-Collapse SN Rate in the Milky Way Gamma rays from 26 Al (Milky Way) Historical galactic SNe (all types) SN statistics in external galaxies No galactic neutrino burst Core-collapse SNe per century 0123456 78 910 van den Bergh & McClure (1994) Cappellaro & Turatto (2000) Diehl et al. (2006) Tammann et al. (1994) Strom (1994) 90 % CL (25 y obserservation) Alekseev et al. (1993) References: van den Bergh & McClure, ApJ 425 (1994) 205. Cappellaro & Turatto, astro- ph/0012455. Diehl et al., Nature 439 (2006) 45. Strom, Astron. Astrophys. 288 (1994) L1. Tammann et al., ApJ 92 (1994) 487. Alekeseev et al., JETP 77 (1993) 339 and my update.

48 Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay SuperNova Early Warning System (SNEWS) Neutrino observation can alert astronomers several hours in advance to a supernova. To avoid false alarms, require alarm from at least two experiments. CoincidenceServer @ BNL Super-K Alert Others ? LVD IceCube http://snews.bnl.govastro-ph/0406214 Supernova 1987A Early Light Curve

49 Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Experimental Limits on Relic Supernova Neutrinos Cline, astro-ph/0103138 Upper-limit flux of Upper-limit flux of Kaplinghat et al., Kaplinghat et al., astro-ph/9912391 astro-ph/9912391 Integrated 54 cm -2 s -1 Integrated 54 cm -2 s -1 Super-K upper limit Super-K upper limit 29 cm -2 s -1 for 29 cm -2 s -1 for Kaplinghat et al. spectrum Kaplinghat et al. spectrum [hep-ex/0209028] [hep-ex/0209028]

50 Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay DSNB Measurement with Neutron Tagging Beacom & Vagins, hep-ph/0309300 [Phys. Rev. Lett., 93:171101, 2004] Pushing the boundaries of neutrino astronomy to cosmological distances Future large-scale scintillator detectors (e.g. LENA with 50 kt) Inverse beta decay reaction tagged Inverse beta decay reaction tagged Location with smaller reactor flux Location with smaller reactor flux (e.g. Pyhäsalmi in Finland) could (e.g. Pyhäsalmi in Finland) could allow for lower threshold allow for lower threshold

51 Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay LAGUNA - Funded FP7 Design Study Large Apparati for Grand Unification and Neutrino Astrophysics (see also arXiv:0705.0116)

52 Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay The Red Supergiant Betelgeuse (Alpha Orionis) First resolved image of a star other than Sun Distance(Hipparcos) 130 pc (425 lyr) If Betelgeuse goes Supernova: 6 10 7 neutrino events in Super-Kamiokande 6 10 7 neutrino events in Super-Kamiokande 2.4 10 3 neutron events per day from Silicon-burning phase 2.4 10 3 neutron events per day from Silicon-burning phase (few days warning!), need neutron tagging (few days warning!), need neutron tagging [Odrzywolek, Misiaszek & Kutschera, astro-ph/0311012] [Odrzywolek, Misiaszek & Kutschera, astro-ph/0311012]


Download ppt "Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay SN 1006 Georg Raffelt, Max-Planck-Institut für."

Similar presentations


Ads by Google