Presentation is loading. Please wait.

Presentation is loading. Please wait.

Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU DarmstadtTitle Georg Raffelt, Max-Planck-Institut für Physik,

Similar presentations


Presentation on theme: "Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU DarmstadtTitle Georg Raffelt, Max-Planck-Institut für Physik,"— Presentation transcript:

1 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU DarmstadtTitle Georg Raffelt, Max-Planck-Institut für Physik, München TU Darmstadt, Physik Kolloquium, 23. November 2007 Neutrinos in Astrophysics and Cosmology

2 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt Paulis Explanation of the Beta Decay Spectrum (1930) Niels Bohr: Energy not conserved in the quantum domain? Wolfgang Pauli ( ) Nobel Prize 1945 Neutron(1930)Neutron(1930)Neutrino(E.Fermi)

3 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt Periodic System of Elementary Particles QuarksLeptons Charge 2/3 Up Charge 1/3 Down Charge 1 Electron Charge 0 e-Neutrino eedu Neutron Proton Proton QuarksLeptons Charm Top Gravitation Weak Interaction Strong Interaction (QCD) Electromagnetic Interaction (QED) Down Strange Bottom Electron Muon Tau e-Neutrino -Neutrino -Neutrino 1st Family 2nd Family 3rd Family Charge 2/3 Charge 1/3 Charge 1 Charge 0 Up -Neutrino -Neutrino ee d s b c t u

4 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt Where do Neutrinos Appear in Nature? Astrophysical Accelerators Soon ? Cosmic Big Bang (Today 330 /cm 3 ) Indirect Evidence Indirect Evidence Nuclear Reactors Particle Accelerators Particle Accelerators Earth Atmosphere (Cosmic Rays) Sun Supernovae (Stellar Collapse) SN 1987A SN 1987A Earth Crust (NaturalRadioactivity)

5 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt Hans Bethe ( , Nobel prize 1967) Thermonuclear reaction chains (1938) Neutrinos from the Sun Solar radiation: 98 % light 2 % neutrinos 2 % neutrinos At Earth 66 billion neutrinos/cm 2 sec Reaction-chains Energy 26.7 MeV Helium

6 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt Bethes Classic Paper on Nuclear Reactions in Stars No neutrinos from nuclear reactions in 1938 …

7 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt Gamow & Schoenberg, Phys. Rev. 58:1117 (1940)

8 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt Sun Glasses for Neutrinos? Several light years of lead Several light years of lead needed to shield solar needed to shield solar neutrinos neutrinos Bethe & Peierls 1934: Bethe & Peierls 1934: … this evidently means … this evidently means that one will never be able that one will never be able to observe a neutrino. to observe a neutrino. 8.3 light minutes

9 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt First Detection ( ) Fred Reines (1918 – 1998) Nobel prize 1995 Clyde Cowan (1919 – 1974) Detector prototype Anti-ElectronNeutrinosfromHanford Nuclear Reactor 3 Gammas in coincidence pp nn CdCd e+e+e+e+ e+e+e+e+ e-e-e-e- e-e-e-e-

10 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt Inverse beta decay of chlorine 600 tons of Perchloroethylene Homestake solar neutrino Homestake solar neutrino observatory ( ) observatory ( ) First Measurement of Solar Neutrinos

11 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt Cherenkov Effect Water Elastic scattering or CC reaction Neutrino LightLight Cherenkov Ring Electron or Muon (Charged Particle) Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt

12 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt Super-Kamiokande Neutrino Detector 42 m 39.3 m

13 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt Super-Kamiokande: Sun in the Light of Neutrinos Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt

14 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt < MeV MeV MeV PPI < 18.8 MeV hep MeV MeV < 15 MeV PPIIPPIII Hydrogen burning: Proton-Proton Chains 15%85% 0.02%90%10% 0.24%100%

15 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt Solar Neutrino Spectrum 7-Be line measured by Borexino (2007)

16 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU DarmstadtBOREXINO Expected without flavor oscillationsExpected without flavor oscillations 75 ± 4 c/100t/d Expected with oscillationsExpected with oscillations 49 ± 4 c/100t/d BOREXINO result (August 07)BOREXINO result (August 07) 47 ± 7 stat ± 12 sys c/100t/d Neutrino electron scattering Neutrino electron scattering Liquid scintillator technology Liquid scintillator technology (~ 300 tons) (~ 300 tons) Low energy threshold Low energy threshold (~ 60 keV) (~ 60 keV) Online since 16 May 2007 Online since 16 May 2007

17 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt Neutrino Flavor Oscillations Two-flavor mixing Bruno Pontecorvo (1913 – 1993) Invented nu oscillations Each mass eigenstate propagates as with Phase difference implies flavor oscillations OscillationLength sin 2 (2 ) Probability e Probability e z

18 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt Mixing of Neutrinos with Different Mass Electronneutrino Neutrino mass m 1 Neutrino mass m 2 Neutrino propagation as a wave phenomenon Mass m 1 Mass m 2 = m 1 Mass m 1 Mass m 2 > m 1 Mass m 1 Mass m 2 > m 1 Mass m 1 Mass m 2 > m 1 Mass m 1 Mass m 2 > m 1 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt

19 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt Neutrino Oscillations Mass m 1 Mass m 2 > m 1 Oscillation length Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt

20 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt Neutrino Oscillations Oscillation length Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt

21 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt Three-Flavor Neutrino Parameters CP-violating phase CP-violating phase Solar Atmospheric CHOOZSolar/KamLAND 2 ranges hep-ph/ Atmospheric/K2K e e 1 SunNormal2 3 Atmosphere e e 1 SunInverted2 3 Atmosphere Tasks and Open Questions Precision for 12 and 23 Precision for 12 and 23 How large is 13 ? How large is 13 ? CP-violating phase ? CP-violating phase ? Mass ordering ? Mass ordering ? (normal vs inverted) (normal vs inverted) Absolute masses ? Absolute masses ? (hierarchical vs degenerate) (hierarchical vs degenerate) Dirac or Majorana ? Dirac or Majorana ?

22 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt Sanduleak Large Magellanic Cloud Distance 50 kpc ( light years) Tarantula Nebula Supernova 1987A 23 February 1987 Supernova 1987A 23 February 1987 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt

23 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt Supernova Neutrinos 20 Jahre nach SN 1987A Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt

24 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt Crab Nebula Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt

25 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt Helium-burning star HeliumBurning HydrogenBurning Main-sequence star Hydrogen Burning Onion structure Degenerate iron core: 10 9 g cm g cm 3 T K T K M Fe 1.5 M sun M Fe 1.5 M sun R Fe 8000 km R Fe 8000 km Collapse (implosion) Stellar Collapse and Supernova Explosion

26 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt Collapse (implosion) Explosion Newborn Neutron Star ~ 50 km Proto-Neutron Star nuc g cm 3 nuc g cm 3 T 30 MeV NeutrinoCooling Stellar Collapse and Supernova Explosion

27 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt Newborn Neutron Star ~ 50 km Proto-Neutron Star nuc g cm 3 nuc g cm 3 T 30 MeV NeutrinoCooling Gravitational binding energy Gravitational binding energy E b erg 17% M SUN c 2 E b erg 17% M SUN c 2 This shows up as This shows up as 99% Neutrinos 99% Neutrinos 1% Kinetic energy of explosion 1% Kinetic energy of explosion (1% of this into cosmic rays) (1% of this into cosmic rays) 0.01% Photons, outshine host galaxy 0.01% Photons, outshine host galaxy Neutrino luminosity Neutrino luminosity L erg / 3 sec L erg / 3 sec L SUN L SUN While it lasts, outshines the entire While it lasts, outshines the entire visible universe visible universe Stellar Collapse and Supernova Explosion

28 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt Neutrino Signal of Supernova 1987A Within clock uncertainties, signals are contemporaneous Kamiokande-II (Japan) Water Cherenkov detector 2140 tons Clock uncertainty 1 min Irvine-Michigan-Brookhaven (US) Water Cherenkov detector 6800 tons Clock uncertainty 50 ms Baksan Scintillator Telescope (Soviet Union), 200 tons Random event cluster ~ 0.7/day Clock uncertainty +2/-54 s

29 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt SN 1987A Event No.9 in Kamiokande-II Kamiokande-II detector 2140 tons of water fiducial volume for SN 1987A Hirata et al., PRD 38 (1988) 448

30 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt 2002 Physics Nobel Prize for Neutrino Astronomy Ray Davis Jr. ( ) Masatoshi Koshiba (*1926) for pioneering contributions to astrophysics, in particular for the detection of cosmic neutrinos particular for the detection of cosmic neutrinos

31 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt Neutrino-Driven Delayed Explosion Picture adapted from Janka, astro-ph/ Picture adapted from Janka, astro-ph/ Neutrino heating increases pressure behind shock front

32 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt Standing Accretion Shock Instability (SASI) Mezzacappa et al., Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt

33 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt Late-time signal most sensitive observable The Energy-Loss Argument Neutrinosphere Neutrino Neutrino diffusion diffusion Emission of very weakly interacting particles would steal energy from the neutrino burst and shorten it. (Early neutrino burst powered by accretion, not sensitive to volume energy loss.) not sensitive to volume energy loss.) Volume emission Volume emission of novel particles of novel particles SN 1987A neutrino signal

34 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt Do Neutrinos Gravitate? Neutrinos arrive a few hours earlier than photons Early warning (SNEWS) SN 1987A: Transit time for photons and neutrinos equal to within ~ 3h Equal within ~ Shapiro time delay for particles moving in a gravitational potential Longo, PRL 60:173,1988 Krauss & Tremaine, PRL 60:176,1988 Proves directly that neutrinos respond to gravity in the usual way Proves directly that neutrinos respond to gravity in the usual way because for photons gravitational lensing already proves this point because for photons gravitational lensing already proves this point Cosmological limits N 1 much worse test of neutrino gravitation Cosmological limits N 1 much worse test of neutrino gravitation Provides limits on parameters of certain non-GR theories of gravitation Provides limits on parameters of certain non-GR theories of gravitation Photons likely obscured for next galactic SN, so this result probably Photons likely obscured for next galactic SN, so this result probably unique to SN 1987A unique to SN 1987A

35 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt Large Detectors for Supernova Neutrinos Super-Kamiokande (10 4 ) KamLAND (400) MiniBooNE(200) In brackets events for a fiducial SN at distance 10 kpc LVD (400) Borexino (100) IceCube (10 6 ) Baksan Baksan (100) (100)

36 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt Simulated Supernova Signal at Super-Kamiokande Simulation for Super-Kamiokande SN signal at 10 kpc, based on a numerical Livermore model [Totani, Sato, Dalhed & Wilson, ApJ 496 (1998) 216] AccretionPhase Kelvin-Helmholtz Cooling Phase

37 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt IceCube Neutrino Telescope at the South Pole 1 km 3 antarctic ice, instrumented 1 km 3 antarctic ice, instrumented with 4800 photomultipliers with 4800 photomultipliers 22 of 80 strings installed (2007) 22 of 80 strings installed (2007) Completion until 2011 foreseen Completion until 2011 foreseen

38 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt Global Cosmic Ray Spectrum

39 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt Core of the Galaxy NGC 4261 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt

40 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt Neutrino Beams: Heaven and Earth Target: Protons or Photons Approx. equal fluxes of photons & neutrinos Equal neutrino fluxes in all flavors due to oscillations F. Halzen (2002)

41 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt AMANDA Skyplot events from northern hemisphere 3369 events from northern hemisphere

42 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt IceCube as a Supernova Neutrino Detector Each optical module (OM) picks up Cherenkov light from its neighborhood. SN appears as correlated noise. About 300 About 300 Cherenkov Cherenkov photons photons per OM per OM from a SN from a SN at 10 kpc at 10 kpc Noise Noise per OM per OM < 260 Hz < 260 Hz Total of Total of 4800 OMs 4800 OMs in IceCube in IceCube IceCube SN signal at 10 kpc, based on a numerical Livermore model [Dighe, Keil & Raffelt, hep-ph/ ] Method first discussed by Pryor, Roos & Webster, Pryor, Roos & Webster, ApJ 329:355 (1988) ApJ 329:355 (1988) Halzen, Jacobsen & Zas Halzen, Jacobsen & Zas astro-ph/ astro-ph/

43 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt H- and L-Resonance for MSW Oscillations R. Tomàs, M. Kachelriess, G. Raffelt, A. Dighe, H.-T. Janka & L. Scheck: Neutrino signatures of supernova forward and reverse shock propagation [astro-ph/ ] Resonance density for Resonance

44 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt Shock-Wave Propagation in IceCube Choubey, Harries & Ross, Probing neutrino oscillations from supernovae shock waves via the IceCube detector, astro-ph/ Normal Hierarchy Inverted Hierarchy No shockwave Inverted Hierarchy Forward shock Inverted Hierarchy Forward & reverse shock

45 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt Core-Collapse SN Rate in the Milky Way Gamma rays from 26 Al (Milky Way) Historical galactic SNe (all types) SN statistics in external galaxies No galactic neutrino burst Core-collapse SNe per century van den Bergh & McClure (1994) Cappellaro & Turatto (2000) Diehl et al. (2006) Tammann et al. (1994) Strom (1994) 90 % CL (25 y obserservation) Alekseev et al. (1993) References: van den Bergh & McClure, ApJ 425 (1994) 205. Cappellaro & Turatto, astro- ph/ Diehl et al., Nature 439 (2006) 45. Strom, Astron. Astrophys. 288 (1994) L1. Tammann et al., ApJ 92 (1994) 487. Alekeseev et al., JETP 77 (1993) 339 and my update.

46 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt SuperNova Early Warning System (SNEWS) Neutrino observation can alert astronomers several hours in advance to a supernova. To avoid false alarms, require alarm from at least two experiments. BNL Super-K Alert Others ? LVD IceCube Supernova 1987A Early Light Curve

47 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt The Red Supergiant Betelgeuse (Alpha Orionis) First resolved image of a star other than Sun Distance(Hipparcos) 130 pc (425 lyr) If Betelgeuse goes Supernova: neutrino events in Super-Kamiokande neutrino events in Super-Kamiokande neutron events per day from Silicon-burning phase neutron events per day from Silicon-burning phase (few days warning!), need neutron tagging (few days warning!), need neutron tagging [Odrzywolek, Misiaszek & Kutschera, astro-ph/ ] [Odrzywolek, Misiaszek & Kutschera, astro-ph/ ]

48 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt LAGUNA - Funded FP7 Design Study Large Apparati for Grand Unification and Neutrino Astrophysics (see also arXiv: )

49 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU DarmstadtTitle Dark Energy 73% Dark Energy 73% (Cosmological Constant) (Cosmological Constant) Neutrinos Neutrinos 0.1 2% 0.1 2% Dark Dark Matter 23% Matter 23% Normal Matter 4% (of this about 10% luminous) luminous) Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt

50 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt Weighing Neutrinos with KATRIN Sensitive to common mass scale m Sensitive to common mass scale m for all flavors because of small mass for all flavors because of small mass differences from oscillations differences from oscillations Best limit from Mainz und Troitsk Best limit from Mainz und Troitsk m < 2.2 eV (95% CL) m < 2.2 eV (95% CL) KATRIN can reach 0.2 eV KATRIN can reach 0.2 eV Under construction Under construction Data taking foreseen to begin in 2009 Data taking foreseen to begin in 2009

51 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt KATRIN Approaching (25 Nov 2006)

52 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt Cosmological Limit on Neutrino Masses Cosmic neutrino sea ~ 112 cm -3 neutrinos + anti-neutrinos per flavor m < 40 eV m < 40 eV For all stable flavors A classic paper: A classic paper: Gershtein & Zeldovich Gershtein & Zeldovich JETP Lett. 4 (1966) 120 JETP Lett. 4 (1966) 120

53 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt Strukturbildung im Universum SmoothStructured Structure forms by Structure forms by gravitational instability gravitational instability of primordial of primordial density fluctuations density fluctuations A fraction of hot dark matter A fraction of hot dark matter suppresses small-scale structure suppresses small-scale structure

54 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt Structure Formation with Hot Dark Matter Troels Haugbølle, Neutrinos with m = 6.9 eV Standard CDM Model Structure fromation simulated with Gadget code Cube size 256 Mpc at zero redshift

55 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt Power Spectrum of Cosmic Density Fluctuations

56 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt Some Recent Cosmological Limits on Neutrino Masses m /eV m /eV (limit 95%CL) Data / Priors Spergel et al. (WMAP) 2003 [astro-ph/ ] [astro-ph/ ]0.69 WMAP-1, 2dF, HST, 8 Hannestad 2003 [astro-ph/ ] [astro-ph/ ]1.01 WMAP-1, CMB, 2dF, HST Crotty et al [hep-ph/ ] [hep-ph/ ] WMAP-1, CMB, 2dF, SDSS & HST, SN Hannestad 2004 [hep-ph/ ] [hep-ph/ ]0.65 WMAP-1, SDSS, SN Ia gold sample, Ly- data from Keck sample Seljak et al [astro-ph/ ] [astro-ph/ ]0.42 WMAP-1, SDSS, Bias, Ly- data from SDSS sample Spergel et al [hep-ph/ ] [hep-ph/ ]0.68 WMAP-3, SDSS, 2dF, SN Ia, 8 Seljak et al [astro-ph/ ] [astro-ph/ ]0.14 WMAP-3, CMB-small, SDSS, 2dF, SN Ia, BAO (SDSS), Ly- (SDSS) Hannestad et al [hep-ph/ ] [hep-ph/ ]0.30 WMAP-1, CMB-small, SDSS, 2dF, SN Ia, BAO (SDSS), Ly- (SDSS)

57 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt Weak Lensing A Powerful Probe for the Future UnlensedLensed Distortion of background images by foreground matter

58 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt Sensitivity Forecasts for Future LSS Observations Kaplinghat, Knox & Song, astro-ph/ σ (m ν ) ~ 0.15 eV (Planck) σ (m ν ) ~ eV (CMBpol) CMB lensing Lesgourgues, Pastor & Perotto, hep-ph/ Planck & SDSS m > 0.21 eV detectable m > 0.21 eV detectable at 2 at 2 m > 0.13 eV detectable m > 0.13 eV detectable at 2 at 2 Ideal CMB & 40 x SDSS Abazajian & Dodelson astro-ph/ Future weak lensing survey 4000 deg 2 σ (m ν ) ~ 0.1 eV Wang, Haiman, Hu, Khoury & May, astro-ph/ Weak-lensing selected sample of > 10 5 clusters σ (m ν ) ~ 0.03 eV

59 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt Fermion Mass Spectrum meVeVkeVMeVGeVTeV dsb Quarks (Q = 1/3) uct Quarks (Q = 2/3) Charged Leptons (Q = 1) e All flavors 3 Neutrinos

60 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt Periodic System of Elementary Particles QuarksLeptons 2/3 2/3 c t Gravitation Weak Interaction Strong Intn Electromagnetic Intn 1/3 1/3 s b st Family 2 nd Family 3 rd Family ude Charge0 Matter Anti-QuarksAnti-Leptons 2/3 2/3 1/3 1/30 1 Strong Intn Electromagnetic Intn Antimatter Why is there no antimatter in the Universe? (Problem of Baryogenesis) 0 0 LeptonsAnti-Leptons Majorana Neutrinos are their own antiparticles Can explain baryogenesis by leptogenesis

61 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt Neutrinos Charged Leptons See-Saw Model for Neutrino Masses Diagonalize Diagonalize Lagrangian for Lagrangian for particle masses particle masses Dirac masses Dirac masses from coupling from coupling to standard to standard Higgs field Higgs field Heavy Heavy Majorana Majorana masses masses M j > GeV M j > GeV Light Majorana mass

62 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt See-Saw Model for Neutrino Masses Light Majorana mass N GeV 1 GeV GeV ChargedleptonsOrdinaryneutrinosHeavyright-handedneutrinos (no gauge interactions) interactions)

63 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt Equilibrium abundance of heavy Majorana neutrinos W. Buchmüller & M. Plümacher: Neutrino masses and the baryon asymmetry Int. J. Mod. Phys. A15 (2000) M. Fukugita & T. Yanagida: M. Fukugita & T. Yanagida: Baryogenesis without Grand Baryogenesis without Grand Unification Unification Phys. Lett. B 174 (1986) 45 Phys. Lett. B 174 (1986) 45 Leptogenesis by Out-of-Equilibrium Decay Equilibrium abundance of heavy Majorana neutrinos Real abundance determined by decay rate Createdlepton-numberabundance Equilibrium abundance of heavy Majorana neutrinos Real abundance determined by decay rate CP-violating decays by CP-violating decays by interference of tree-level interference of tree-level with one-loop diagram with one-loop diagram

64 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt Leptogenesis by Majorana Neutrino Decays In see-saw models for neutrino masses, out-of-equilibrium In see-saw models for neutrino masses, out-of-equilibrium decays of right-handed heavy Majorana neutrinos provide decays of right-handed heavy Majorana neutrinos provide source for CP- and L-violation source for CP- and L-violation Cosmological evolution B = L = 0 early on B = L = 0 early on Thermal freeze-out of heavy Majorana neutrinos Thermal freeze-out of heavy Majorana neutrinos Out-of-equilibrium CP-violating decay creates net L Out-of-equilibrium CP-violating decay creates net L Shift L excess into B by sphaleron effects Shift L excess into B by sphaleron effects Sufficient deviation from equilibrium distribution of heavy Majorana neutrinos at freeze-out Limits on Yukawacouplings masses of ordinaryneutrinos Requires Majorana neutrino masses below 0.1 eV Buchmüller, Di Bari & Plümacher, hep-ph/ & hep-ph/

65 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU DarmstadtTitle Dark Energy 73% Dark Energy 73% (Cosmological Constant) (Cosmological Constant) Neutrinos Neutrinos 0.1 2% 0.1 2% Dark Dark Matter 23% Matter 23% Normal Matter 4% (of this about 10% luminous) luminous) Massive neutrinos can explain presence of matter by leptogenesis mechanism Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt

66 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt Killing Two Birds with One Stone See-Saw mechanism explains Small neutrino masses Small neutrino masses Baryon asymmetry of the Baryon asymmetry of the universe by leptogenesis universe by leptogenesis

67 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt Leptogenesis by Majorana Neutrino Decays A classic paper

68 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt Leptogenesis as a Research Topic Citation of Fukugita & Yanagida, PLB 174 (1986) 45 Citation of Fukugita & Yanagida, PLB 174 (1986) 45 or leptogenesis in title (SPIRES data base)

69 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt Neutrinoless Decay Measuredquantity Best limit from 76 Ge Standard 2 mode 0 mode, enabled by Majorana mass

70 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt Portion of the Hubble Ultra Deep Field Astrophysics & Cosmology Astrophysics & Cosmology Cosmic Rays Cosmic Rays Elementary Particle Physics Elementary Particle Physics Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt

71 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt

72 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt Gamow & Schoenberg 2

73 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt Long-Baseline Experiment K2K K2K Experiment (KEK to Kamiokande) Kamiokande) has confirmed neutrinooscillations, to be followed by T2K (2009)

74 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt Geo Neutrinos Predicted geo neutrino flux Reactor background KamLAND scintillator detector (1 kton)

75 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt Matrices of Density in Flavor Space Neutrino quantum field Neutrino quantum field Spinors in flavor space Spinors in flavor space Quantum states (amplitudes) Variables for discussing neutrino flavor oscillations Matrices of densities (analogous to occupation numbers) Quadratic quantities, required for dealing with decoherence, collisions, Pauli-blocking, nu-nu-refraction, etc. Sufficient for beam experiments, but confusing wave packet debates for quantifying decoherence effects Destruction operators for (anti)neutrinos Neutrinos Anti-neutrinos

76 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt General Equations of Motion Usual matter effect with Vacuum oscillations Vacuum oscillations M is neutrino mass matrix M is neutrino mass matrix Note opposite sign between Note opposite sign between neutrinos and antineutrinos neutrinos and antineutrinos Nonlinear nu-nu effects are important when nu-nu interaction energy exceeds typical vacuum oscillation frequency (Do not compare with matter effect!)

77 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt Toy Supernova in Single-Angle Approximation Bipolar Oscillations Assume 80% anti-neutrinos Assume 80% anti-neutrinos Vacuum oscillation frequency Vacuum oscillation frequency = 0.3 km 1 = 0.3 km 1 Neutrino-neutrino interaction Neutrino-neutrino interaction energy at nu sphere (r = 10 km) energy at nu sphere (r = 10 km) = km 1 = km 1 Falls off approximately as r 4 Falls off approximately as r 4 (geometric flux dilution and nus (geometric flux dilution and nus become more co-linear) become more co-linear) Decline of oscillation amplitude explained in pendulum analogy by inreasing moment of inertia (Hannestad, Raffelt, Sigl & Wong astro-ph/ ) astro-ph/ )

78 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt Collective SN neutrino oscillations Bipolar collective transformations important, even for dense matter Duan, Fuller & Qian Duan, Fuller & Qian astro-ph/ astro-ph/ Numerical simulations Including multi-angle effects Including multi-angle effects Discovery of spectral splits Discovery of spectral splits Duan, Fuller, Carlson & Qian Duan, Fuller, Carlson & Qian astro-ph/ , astro-ph/ , Pendulum in flavor space Pendulum in flavor space Collective pair annihilation Collective pair annihilation Pure precession mode Pure precession mode Hannestad, Raffelt, Sigl & Wong Hannestad, Raffelt, Sigl & Wong astro-ph/ astro-ph/ Duan, Fuller, Carlson & Qian Duan, Fuller, Carlson & Qian astro-ph/ astro-ph/ Self-maintained coherence vs. self-induced decoherence caused by multi-angle effects Raffelt & Sigl, hep-ph/ Raffelt & Sigl, hep-ph/ Esteban-Pretel, Pastor, Tomas, Esteban-Pretel, Pastor, Tomas, Raffelt & Sigl, arXiv: Raffelt & Sigl, arXiv: Theory of spectral splits in terms of adiabatic evolution in rotating frame Raffelt & Smirnov, Raffelt & Smirnov, arXiv: , arXiv: , Duan, Fuller, Carlson & Qian Duan, Fuller, Carlson & Qian arXiv: , arXiv: , Independent numerical simulations Fogli, Lisi, Marrone & Mirizzi Fogli, Lisi, Marrone & Mirizzi arXiv: arXiv:

79 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt SN 1006 Looking forward to the next galactic supernova

80 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt Delayed Explosion Wilson, Proc. Univ. Illinois Meeting on Num. Astrophys.(1982) Bethe & Wilson, ApJ 295 (1985) 14

81 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt Experimental Limits on Relic Supernova Neutrinos Cline, astro-ph/ Upper-limit flux of Upper-limit flux of Kaplinghat et al., Kaplinghat et al., astro-ph/ astro-ph/ Integrated 54 cm -2 s -1 Integrated 54 cm -2 s -1 Super-K upper limit Super-K upper limit 29 cm -2 s -1 for 29 cm -2 s -1 for Kaplinghat et al. spectrum Kaplinghat et al. spectrum [hep-ex/ ] [hep-ex/ ]

82 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt DSNB Measurement with Neutron Tagging Beacom & Vagins, hep-ph/ [Phys. Rev. Lett., 93:171101, 2004] Pushing the boundaries of neutrino astronomy to cosmological distances Future large-scale scintillator detectors (e.g. LENA with 50 kt) Inverse beta decay reaction tagged Inverse beta decay reaction tagged Location with smaller reactor flux Location with smaller reactor flux (e.g. Pyhäsalmi in Finland) could (e.g. Pyhäsalmi in Finland) could allow for lower threshold allow for lower threshold

83 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt Neutrinos in Astrophysics and Cosmology Neutrinos Neutrinos responsible responsible for ordinary for ordinary astrophysical astrophysical and and cosmological cosmological phenomena phenomena Dominant radiation component in the early universe Dominant radiation component in the early universe Crucial role in big-bang nucleosynthesis Crucial role in big-bang nucleosynthesis Dark-matter component (but subdominant) Dark-matter component (but subdominant) May be responsible for baryonic matter in the May be responsible for baryonic matter in the universe (leptogenesis) universe (leptogenesis) Important (sometimes dominant) cooling agent of stars Important (sometimes dominant) cooling agent of stars May trigger supernova explosions May trigger supernova explosions May be crucial for r-process nucleosynthesis May be crucial for r-process nucleosynthesis Heavenly Heavenly laboratories laboratories for new for new particle particle physics physics phenomena phenomena Cosmological limit (future detection?) of nu mass scale Cosmological limit (future detection?) of nu mass scale Flavor oscillations of solar and atmospheric neutrinos Flavor oscillations of solar and atmospheric neutrinos Neutrino oscillations from a future galactic supernova Neutrino oscillations from a future galactic supernova Limits on exotic neutrino properties Limits on exotic neutrino properties (dipole moments, right-handed interactions, decays, (dipole moments, right-handed interactions, decays, flavor-violating neutral currents, sterile nus, …) flavor-violating neutral currents, sterile nus, …) Neutrinos as Neutrinos as astrophysical astrophysical messengers messengers Look into the solar interior (measure temperature) Look into the solar interior (measure temperature) Watch stellar collapse directly Watch stellar collapse directly Neutrinos from all cosmological supernovae Neutrinos from all cosmological supernovae Astrophysical accelerators for cosmic rays Astrophysical accelerators for cosmic rays Annihilation signature for neutralino dark matter Annihilation signature for neutralino dark matter

84 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU Darmstadt Hot dark matter ruled out in particle simulation [Frenk, White & Davis, ApJ 271 (1983) 417] The coherence length of the neutrino distribution […] is too large to be consistent with the observed clustering scale of galaxies […] The conventional neutrino-dominated picture appears to be ruled out. White, Frenk & Davis, ApJ 274 (1983) L1.


Download ppt "Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 23. November 2007, TU DarmstadtTitle Georg Raffelt, Max-Planck-Institut für Physik,"

Similar presentations


Ads by Google