Presentation is loading. Please wait.

Presentation is loading. Please wait.

Physics Opportunities with Supernova Neutrinos 周 顺 中科院高能所理论室 中国科学技术大学交叉学科理论研究中心 合肥, 2015-3-26.

Similar presentations


Presentation on theme: "Physics Opportunities with Supernova Neutrinos 周 顺 中科院高能所理论室 中国科学技术大学交叉学科理论研究中心 合肥, 2015-3-26."— Presentation transcript:

1 Physics Opportunities with Supernova Neutrinos 周 顺 中科院高能所理论室 中国科学技术大学交叉学科理论研究中心 合肥,

2 Outline  Supernova Neutrinos  Physics Opportunities  Neutrino Mass Scale  WDM Sterile Neutrinos  Summary and Outlook

3 Galactic SN 1054 Distance: 6500 light years (2 kpc) Center: Neutron Star ( R~30 km) Progenitor : M ~ 10 solar masses Red : Optical (Hubble) Blue : X-Ray (Chandra)

4 Stellar Collapse and SN Explosion Hydrogen Burning Main-sequence star Helium-burning star HeliumBurning HydrogenBurning © Raffelt

5 Onion structure Degenerate iron core:   10 9 g cm  3   10 9 g cm  3 T  K T  K M Fe  1.5 M sun M Fe  1.5 M sun R Fe  8000 km R Fe  8000 km Collapse (implosion) © Raffelt Stellar Collapse and SN Explosion

6 Neutrino-driven Explosion © Raffelt Newborn Neutron Star Stellar Collapse and SN Explosion

7 Newborn Neutron Star Neutrino cooling by diffusion Gravitational binding energy Gravitational binding energy E b  3  10 erg  17% M SUN c E b  3  erg  17% M SUN c 2 This shows up as This shows up as 99% Neutrinos 99% Neutrinos 1% Kinetic energy of explosion 1% Kinetic energy of explosion (1% of this into cosmic rays) (1% of this into cosmic rays) 0.01% Photons, outshine host galaxy 0.01% Photons, outshine host galaxy Neutrino luminosity Neutrino luminosity  3  10 erg / 3 sec L  3  erg / 3 sec  3  10L SUN  3  L SUN While it lasts, outshines the entire While it lasts, outshines the entire visible universe visible universe © Raffelt Stellar Collapse and SN Explosion

8 Raffelt, 1996 Kitaura, Janka & Hillebrandt astro-ph/ Supernova Neutrinos: Theoretical Prediction

9 Supernova 1987A 23 February 1987 Sanduleak Large Magellanic Cloud SN 1987A Distance : light yrs (50 kpc) Center : Neutron Star (expected, but not found) Progenitor : M ~ 18 solar masses

10 Supernova Neutrinos: SN 1987A Hirata et al., PRD 38 (1988) 448 Arnett et al., ARAA 27 (1989)

11 Kamiokande-II (Japan): (2,140 ton) Water Cherenkov (2,140 ton) Clock Uncertainty ± 1 min Irvine-Michigan-Brookhaven (US): Water Cherenkov (6,800 ton) Clock Uncertainty ±50 ms Baksan LST (Soviet Union): Liquid Scintillator (200 ton) Clock Uncertainty +2/-54 s Mont Blanc: 5 events, 5 h earlier Supernova Neutrinos: SN 1987A

12 E b [10 53 ergs] Spectral anti-ν e Temperature [MeV] Jegerlehner, Neubig & Raffelt astro-ph/ Assumptions:  Thermal  Equipart. Conclusions: Collapse Collapse Ave.Ener. Duration Problems :  24 events  by chance Supernova Neutrinos: SN 1987A

13 Supernova Neutrinos: Astrophysics & Astronomy Explosion Mechanism : Neutrino-driven Explosion Explosion Mechanism : Neutrino-driven Explosion The prompt shock halted at 150 km, by disintegrating heavy nuclei Neutrinos deposit their energies via interaction with matter; 1 % neutrino energy leads to successful explosion Simulations in 1D & 2D for different progenitor masses observe explosions 3D simulation has just begun; but no clear picture (resolution, progenitors) for a review, Janka,

14 For Optical Observations : uperNova Early Warning System (SNEWS) For Optical Observations : SuperNova Early Warning System (SNEWS) Arnett et al., ARAA 27 (1989) Super-K IceCube LVDBorexino Neutrinos arrive several hours before photons To alert astronomers several hours in advance Supernova Neutrinos: Astrophysics & Astronomy

15 Gravitational waves from SN Explosions Gravitational waves from SN Explosions Locate the SN via neutrinos Locate the SN via neutrinos Bounce GWs from asymmetric neutrino emission GWs from convective mass flows Müller, Rampp, Buras, Janka,& Shoemaker, astro-ph/ “Towards gravitational wave signals from realistic core collapse supernova models” Beacom & Vogel, astro-ph/ SK SK  % None 7.8°3.2° 1.4° 0.6° 95% CL half-cone opening angle Tomàs et al., hep-ph/ n-tagging efficiency Supernova Neutrinos: Astrophysics & Astronomy

16 Neutrino Mass Bound : Time delay of massive particles Neutrino Mass Bound : Time delay of massive particles G. Zatsepin, 1968 Kamiokande-II dataIMB data Estimate: Take the first event A: (t A, E A ) Take the first event A: (t A, E A ) Take the last event B: (t B, E B ) Take the last event B: (t B, E B ) Assumptions:  Instant. emission  Diff. only from m Schramm, CNPP 17 (1987) 239 Supernova Neutrinos: Elementary Particle Physics

17 Flavor Conversion & Matter Effects: Source ─ Prop. ─ Detector Flavor Conversion & Matter Effects: Source ─ Prop. ─ Detector Neutrino sphere High Matter Density:  High interaction rate  Flavors conserved Vacuum MSWCollective Wolfenstein, 78 Mikheyev&Smirnov, 85 Pantaleone, 92 Matter Effects: Envelope Envelope Shock wave Shock wave Earth matter Mass ordering Supernova Neutrinos: Elementary Particle Physics

18 Flavor Conversion: collective effects (accretion phase) Flavor Conversion: collective effects (accretion phase) Duan, Fuller&Qian, Fogli, Lisi, Marrone&Mirizzi, Left: Sketch of Collective effects Bottom: Inverted + Accretion Supernova Neutrinos: Elementary Particle Physics

19 NH IH Dasgupta, Mirizzi, Tamborra&Tomàs, Note: compare between accretion and cooling results Supernova Neutrinos: Elementary Particle Physics Flavor Conversion: collective effects (cooling phase) Flavor Conversion: collective effects (cooling phase)

20 NHIH Dighe & Smirnov, hep-ph/ L – Resonance  Res. for neutrinos  Always adiabatic H – Resonance  Res. for neutrinos (NH)  Res. for antineutrinos (IH) Adiabatic for a ‘large’  13 Supernova Neutrinos: Elementary Particle Physics Flavor Conversion: MSW effects in the SN envelope Flavor Conversion: MSW effects in the SN envelope

21 for for for Normal Normal Inverted Inverted sin 2 (2  13 ) ≳ 10  3 Mass ordering sin 2 (  12 ) 0 cos 2 (  12 ) 0 Case A B Survival probabilities Dighe & Smirnov, hep-ph/ Dighe, Kachelriess, Raffelt & Tomàs, hep-ph/ Primary fluxes (+ collective)Leaving the SN (+ Collective & MSW effects) Supernova Neutrinos: Elementary Particle Physics Flavor Conversion: MSW effects in the SN envelope Flavor Conversion: MSW effects in the SN envelope

22 survival Dighe&Smirnov, hep-ph/ Lunardini & Smirnov, hep-ph/ NH: Matter Effects -antineutrinos Mass Ordering sin 2  13 survival NH IH ≳ 10  3 ≳ 10  3 cos 2  12 Earth matter Yes cos 2  12 0 No Yes Collective Neutrino Oscillations (accretion phase) NoYes IH: Matter Effects - neutrinos If IH is determined from oscillation experiments , Earth matter effects indicate collective effects. Earth matter Supernova Neutrinos: Elementary Particle Physics Flavor Conversion: including Earth Matter Effects Flavor Conversion: including Earth Matter Effects for a ‘large’  13

23 Extra energy-loss channels: Bound on particle physics models Extra energy-loss channels: Bound on particle physics models Cooling via Neutrino Emission Exotic weakly-interacting particles If exotic particles can be produced and escape from the SN core, then the energy carried away by them should be at least smaller than that by neutrinos. Otherwise, the SN neutrino signal would be significantly reduced. The energy-loss argument has been applied to the SN 1987A, and restrictive bounds on particle physics models have been obtained: Axion , Majoron , keV sterile neutrino , …… Supernova Neutrinos: Elementary Particle Physics

24 SN Detection: present and future experiments Super-Kamiokande (10 4 ) KamLAND (400) MiniBooNE(200) LVD (400) Borexino (100) IceCube (10 6 ) Baksan Baksan (100) (100) Water / Ice Cherenkov Liquid Scintillator JUNO (10 4 ) kpc

25 Memphys Hyper-K DUSEL LBNE Megaton-scale water Cherenkov 5  100 kton liquid Argon 100 kton scale scintillator scintillator LENAJUNOHanoHano SN Detection: present and future experiments

26 Key Problem: where and When? © Raffelt (1) Estimate from SN statistics in other galaxies; (2) Only massive stars produce 26 Al (with a half-life 7.2  10 5 years); (3) Historical SNe in the Milky Way; (4) No neutrino bursts observed by Baksan since June 1980

27 Key Problem: where and When?

28 SN Candidate: The Red Supergiant Betelgeuse (Alpha Orionis ) Distance: 425 ly (130 pc) Type : Red Supergiant Mass : ~ 18 solar masses Expected to end its life as SN Super-K: 6  10 7 events

29 Detection of SN Main Channels in LSD 2015/1/10, Jiangmen, Guangdong Goal: to pin down mass ordering A typical 10 kpc

30 Neutrino Mass Bound: SN Model Kamiokande-II DataIMB DataBaksan Data (1)Use the SN 1987A observations to extract the SN model param. (2)Use all the information (t i E i  i ) Maximum likelihood Pagliaroli, Vissani, Costantini & Ianni, Kam, IMB & Baksan Every Event Loredo & Lamb, astro-ph/

31 Signal Events Neutrino Flux Parametrization Pagliaroli, Vissani, Costantini & Ianni, Accretion Phase M a : initial mass T a : initial e + temp.  a : accretion time Cooling Phase R c : -sphere rad. T c : initial temp.  c : cooling time Fit SN Model Parameters (1) Cooling: Thermal distr. of anti- e , and exp. decay of luminosity; (2) Accretion: Anti- e only from e + +n , and thermal distr. of positrons Neutrino Mass Bound: SN Model

32 Neutrino Mass Bound: JUNO: 20 kt (12% p ) liquid scintillator Best-fit values for SN model &  r =100 ms IBD N = 4300

33 1. Generate n pairs of (t i, E i ) according to R (t, E ) 2. Denote e + as (t i, E e i ) corresponding to (t i, E i ) 3. Label event by a relative time  t i and energy E e i 4. Extract SN model parameters and m from data Pagliaroli, Rossi-Torres &Vissani Better Neutrino Mass Bound: Simulations

34 Neutrino Mass JUNO Fit for one single experiment Jia-Shu Lu, Jun Cao, Yu-Feng Li, S.Z., simulations for JUNO 3000 simulations for Super-K (1)Include numerical models, - systematic errors; (2)Simulate a large number of experiments - stat. errors; (3)Low-E, Early-t events help

35 Robust evidence for Dark Matter Moore et al., 99’ Abundance of Cosmic Substructure Cold or Warm DM ?

36 Sterile Neutrinos of keV Masses Production of sterile neutrinos: Low matter density: neutrino flavor oscillations with matter effects High matter density: production & absorption via scattering processes Occupation-number formalism: Diagonal terms: just the usual occupation numbers Non-diagonal terms: encode the phase information Equations of motion: Mass terms and matter potentials

37 Sterile Neutrinos in a SN Core Two-flavor mixing case BpBp PpPp z y x Flavor polarization vectors rotate around magnetic fields Matter Effects Wolfenstein, 78’; Mikheyev, Smirnov, 85’ where the resonant energy is maximal mixing if E ~ E r cos 2θ

38 Sterile Neutrinos in a SN Core Weak-damping limit Oscillation length Mean free path BpBp PpPp z y x BpBp z y x PpPp Neutrinos oscillate many times before a subsequent collision with nucleons

39 Sterile Neutrinos in a SN Core In the weak-damping limit averaged over a period of oscillation Two independent parameters: occupation numbers f α p & f s p Simplified equations of motion: further simplification if sterile neutrinos escape from the SN core set f s p = 0 Lepton-number-loss rateEnergy-loss rate

40 Sterile Neutrinos in a SN Core Tau-sterile neutrino mixing Initial conditions: Y e = 0.3, Y ν e = 0.07, Y ν μ =Y ν τ =0 1.the MSW resonance occurs in the antineutrino channel; 2.asymmetry between tau neutrinos and antineutrinos. Simple bound in the ‘vacuum limit’: E r >> E Energy-loss rate Supernova Bound

41 Energy-loss Rate and SN Bound G. Raffelt, S.Z., Follow the time evolution of η and calculate the energy loss

42 Summary and Outlook  Neutrinos from next nearby supernova cannot be missed (a once-in-a-lifetime opportunity!)  Physics opportunities with SN neutrinos: stellar collapse, explosion mechanism, collective flavor conversion, matter effects, neutrino mass ordering, absolute neutrino mass,…  10 4 neutrino JUNO for a typical galactic SN; to improve neutrino mass bound, & other possibilities; A lot of theoretical works to do while waiting for a real SN


Download ppt "Physics Opportunities with Supernova Neutrinos 周 顺 中科院高能所理论室 中国科学技术大学交叉学科理论研究中心 合肥, 2015-3-26."

Similar presentations


Ads by Google