Presentation is loading. Please wait.

Presentation is loading. Please wait.

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China Neutrinos and the stars.

Similar presentations


Presentation on theme: "Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China Neutrinos and the stars."— Presentation transcript:

1 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Neutrinos and the stars Supernova Neutrinos Georg Raffelt, MPI for Physics Lectures at the Topical Seminar Neutrino Physics & Astrophysics Sept 2008, Beijing, China Georg Raffelt, MPI for Physics Lectures at the Topical Seminar Neutrino Physics & Astrophysics Sept 2008, Beijing, China

2 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Sanduleak Large Magellanic Cloud Distance 50 kpc ( light years) Tarantula Nebula Supernova 1987A 23 February 1987 Supernova 1987A 23 February 1987

3 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Supernova Neutrinos 20 Jahre nach SN 1987A

4 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Crab Nebula

5 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Helium-burning star HeliumBurning HydrogenBurning Main-sequence star Hydrogen Burning Onion structure Degenerate iron core: 10 9 g cm g cm 3 T K T K M Fe 1.5 M sun M Fe 1.5 M sun R Fe 8000 km R Fe 8000 km Collapse (implosion) Stellar Collapse and Supernova Explosion

6 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Collapse (implosion) Explosion Newborn Neutron Star ~ 50 km Proto-Neutron Star nuc g cm 3 nuc g cm 3 T 30 MeV NeutrinoCooling Stellar Collapse and Supernova Explosion

7 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Newborn Neutron Star ~ 50 km Proto-Neutron Star nuc g cm 3 nuc g cm 3 T 30 MeV NeutrinoCooling Gravitational binding energy Gravitational binding energy E b erg 17% M SUN c 2 E b erg 17% M SUN c 2 This shows up as This shows up as 99% Neutrinos 99% Neutrinos 1% Kinetic energy of explosion 1% Kinetic energy of explosion (1% of this into cosmic rays) (1% of this into cosmic rays) 0.01% Photons, outshine host galaxy 0.01% Photons, outshine host galaxy Neutrino luminosity Neutrino luminosity L erg / 3 sec L erg / 3 sec L SUN L SUN While it lasts, outshines the entire While it lasts, outshines the entire visible universe visible universe Stellar Collapse and Supernova Explosion

8 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Neutrino Signal of Supernova 1987A Within clock uncertainties, signals are contemporaneous Kamiokande-II (Japan) Water Cherenkov detector 2140 tons Clock uncertainty 1 min Irvine-Michigan-Brookhaven (US) Water Cherenkov detector 6800 tons Clock uncertainty 50 ms Baksan Scintillator Telescope (Soviet Union), 200 tons Random event cluster ~ 0.7/day Clock uncertainty +2/-54 s

9 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China SN 1987A Event No.9 in Kamiokande Kamiokande Detector Hirata et al., PRD 38 (1988) 448

10 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Thermonuclear vs. Core-Collapse Supernovae Core collapse (Type II, Ib/c) Thermonuclear (Type Ia) Chandrasekhar limit is reached M Ch 1.5 M sun (2Y e ) 2 C O L L A P S E S E T S I N Nuclear burning of C and O ignites Nuclear burning of C and O ignites Nuclear deflagration Nuclear deflagration (Fusion bomb triggered by collapse) (Fusion bomb triggered by collapse) Collapse to nuclear density Collapse to nuclear density Bounce & shock Bounce & shock Implosion Explosion Implosion Explosion Gain of nuclear binding energy Gain of nuclear binding energy ~ 1 MeV per nucleon ~ 1 MeV per nucleon Gain of gravitational binding energy Gain of gravitational binding energy ~ 100 MeV per nucleon ~ 100 MeV per nucleon 99% into neutrinos 99% into neutrinos Powered by gravity Powered by nuclear binding energy Comparable visible energy release of ~ erg Carbon-oxygen white dwarf Carbon-oxygen white dwarf (remnant of (remnant of low-mass star) low-mass star) Accretes matter Accretes matter from companion from companion Degenerate iron core Degenerate iron core of evolved massive star of evolved massive star Accretes matter Accretes matter by nuclear burning by nuclear burning at its surface at its surface

11 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Supernova Neutrinos 20 Jahre nach SN 1987A Explosion Mechanism for Core-Collapse SNe Explosion Mechanism for Core-Collapse SNe

12 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Collapse and Prompt Explosion Supernova explosion primarily a hydrodynamical phenomenon Movies by J.A.Font, Numerical Hydrodynamics in General Relativity VelocityDensity

13 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Why No Prompt Explosion? DissociatedMaterial (n, p, e, ) 0.1 M sun of iron has a 0.1 M sun of iron has a nuclear binding energy nuclear binding energy erg erg Comparable to Comparable to explosion energy explosion energy Shock wave forms Shock wave forms within the iron core within the iron core Dissipates its energy Dissipates its energy by dissociating the by dissociating the remaining layer of iron remaining layer of iron

14 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Neutrinos to the Rescue Picture adapted from Janka, astro-ph/ Picture adapted from Janka, astro-ph/ Neutrino heating increases pressure behind shock front

15 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Supernova Delayed Explosion Scenario

16 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Standing Accretion Shock Instability (SASI) Mezzacappa et al.,

17 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Gravitational Waves from Core-Collapse Supernovae Müller, Rampp, Buras, Janka, & Shoemaker, Müller, Rampp, Buras, Janka, & Shoemaker, Towards gravitational wave signals from Towards gravitational wave signals from realistic core collapse supernova models, realistic core collapse supernova models, astro-ph/ astro-ph/ The gravitational-wave signal from convection is a generic and dominating feature Bounce Convection Asymmetric neutrino emission

18 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Supernova Neutrinos 20 Jahre nach SN 1987A Some Particle-Physics Lessons from SN 1987A Some Particle-Physics Lessons from SN 1987A

19 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Neutrino Mass Sensitivity by Signal Dispersion Time-of-flight delay Time-of-flight delay of massive neutrinos of massive neutrinos SN 1987A SN 1987A (50 kpc) (50 kpc) m 20 eV E 20 MeV, t 10 s E 20 MeV, t 10 s Simple estimate or detailed maximum Simple estimate or detailed maximum likelihood analysis give similar results likelihood analysis give similar results Future Future Galactic SN Galactic SN at 10 kpc at 10 kpc (Super-K) (Super-K) m ~ 3 eV Rise-time of signal ~ 10 ms (Totani, PRL 80:2040, 1998) m ~ 1 eV Full signal (Nardi & Zuluaga, NPB 731:140, 2005) With late With late black-hole black-hole formation formation m ~ 2 eV Cutoff infinitely fast Cutoff infinitely fast (Beacom et al., PRD 63:073011, 2001) (Beacom et al., PRD 63:073011, 2001) m ~ 1 2 eV D 750 kpc, t 10 s D 750 kpc, t 10 s few tens of events few tens of events Future SN in Future SN in Andromeda Andromeda (Megatonne) (Megatonne)

20 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Early Lightcurve of SN 1987A Adapted from Arnett et al., ARAA 27 (1989) Expectedvisualbrightnessevolution Expectedbolometricbrightnessevolution Neutrinos several hours before light

21 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Do Neutrinos Gravitate? Neutrinos arrive a few hours earlier than photons Early warning (SNEWS) SN 1987A: Transit time for photons and neutrinos equal to within ~ 3h Equal within ~ Shapiro time delay for particles moving in a gravitational potential Longo, PRL 60:173,1988 Krauss & Tremaine, PRL 60:176,1988 Proves directly that neutrinos respond to gravity in the usual way Proves directly that neutrinos respond to gravity in the usual way because for photons gravitational lensing already proves this point because for photons gravitational lensing already proves this point Cosmological limits N 1 much worse test of neutrino gravitation Cosmological limits N 1 much worse test of neutrino gravitation Provides limits on parameters of certain non-GR theories of gravitation Provides limits on parameters of certain non-GR theories of gravitation Photons likely obscured for next galactic SN, so this result probably Photons likely obscured for next galactic SN, so this result probably unique to SN 1987A unique to SN 1987A

22 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China The Energy-Loss Argument Neutrinosphere Neutrino Neutrino diffusion diffusion Late-time signal most sensitive observable Emission of very weakly interacting particles would steal energy from the neutrino burst and shorten it. (Early neutrino burst powered by accretion, not sensitive to volume energy loss.) not sensitive to volume energy loss.) Volume emission Volume emission of novel particles of novel particles SN 1987A neutrino signal

23 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Directsearch Too much cold dark matter TelescopeExperiments Globular clusters (a- -coupling) Too many events Too much energy loss SN 1987A (a-N-coupling) Axion Bounds [GeV] f a [GeV] f aeVkeVmeV eV eV mamamama Too much hot dark matter CASTADMX

24 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Sterile Neutrinos To avoid complete energy loss in ~ 1 s sin 2 (2 es ) Average scattering rate in SN core involving ordinary left-handed neutrinos Electron neutrino appears as sterile neutrino in ½ sin 2 (2 es ) of all cases Active-sterilemixing

25 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Sterile Neutrino Limits See also: Maalampi & Peltoniemi: Effects of the 17-keV Effects of the 17-keV neutrino in supernovae neutrino in supernovae PLB 269:357,1991 PLB 269:357,1991 Hidaka & Fuller: Dark matter sterile Dark matter sterile neutrinos in stellar neutrinos in stellar collapse: alteration of collapse: alteration of energy/lepton number energy/lepton number transport and a transport and a mechanism for mechanism for supernova explosion supernova explosion enhancement enhancement PRD 74:125015,2006 PRD 74:125015,2006

26 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Supernova 1987A Limit on Large Extra Dimensions Cullen & Perelstein, hep-ph/ Cullen & Perelstein, hep-ph/ Hanhart et al., nucl-th/ Hanhart et al., nucl-th/ SN 1987A energy-loss argument: SN 1987A energy-loss argument: R 1 mm, M 9 TeV (n = 2) R 1 mm, M 9 TeV (n = 2) R 1 nm, M 0.7 TeV (n = 3) R 1 nm, M 0.7 TeV (n = 3) Originally the most restrictive Originally the most restrictive limit on such theories, except limit on such theories, except for cosmological arguments for cosmological arguments SN core emits large flux of KK gravity modes by nucleon-nucleon bremsstrahlung Large multiplicity of modes RT ~ RT ~ for R ~ 1 mm, T ~ 30 MeV

27 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Supernova Neutrinos 20 Jahre nach SN 1987A Neutrinos from the Next Galactic Supernova Neutrinos from the Next Galactic Supernova

28 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Local Group of Galaxies Events in a detector with Events in a detector with 30 x Super-K fiducial volume, 30 x Super-K fiducial volume, e.g. Hyper-Kamiokande e.g. Hyper-Kamiokande

29 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Core-Collapse SN Rate in the Milky Way Gamma rays from 26 Al (Milky Way) Historical galactic SNe (all types) SN statistics in external galaxies No galactic neutrino burst Core-collapse SNe per century van den Bergh & McClure (1994) Cappellaro & Turatto (2000) Diehl et al. (2006) Tammann et al. (1994) Strom (1994) 90 % CL (25 y obserservation) Alekseev et al. (1993) References: van den Bergh & McClure, ApJ 425 (1994) 205. Cappellaro & Turatto, astro- ph/ Diehl et al., Nature 439 (2006) 45. Strom, Astron. Astrophys. 288 (1994) L1. Tammann et al., ApJ 92 (1994) 487. Alekeseev et al., JETP 77 (1993) 339 and my update.

30 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Nearby Galaxies with Many Observed Supernovae M83 (NGC 5236, Southern Pinwheel) D = 4.5 Mpc Observed Supernovae: 1923A, 1945B, 1950B, 1957D, 1968L, 1983N NGC 6946 D = (5.5 ± 1) Mpc Observed Supernovae: 1917A, 1939C, 1948B, 1968D, 1969P, 1980K, 2002hh, 2004et, 2008S

31 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Large Detectors for Supernova Neutrinos Super-Kamiokande (10 4 ) KamLAND (400) MiniBooNE(200) In brackets events for a fiducial SN at distance 10 kpc LVD (400) Borexino (100) IceCube (10 6 ) Baksan Baksan (100) (100)

32 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China SuperNova Early Warning System (SNEWS) Neutrino observation can alert astronomers several hours in advance to a supernova. To avoid false alarms, require alarm from at least two experiments. BNL Super-K Alert Others ? LVD IceCube Supernova 1987A Early Light Curve

33 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Simulated Supernova Signal at Super-Kamiokande Simulation for Super-Kamiokande SN signal at 10 kpc, based on a numerical Livermore model [Totani, Sato, Dalhed & Wilson, ApJ 496 (1998) 216] AccretionPhase Kelvin-Helmholtz Cooling Phase

34 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Supernova Pointing with Neutrinos Beacom & Vogel: Can a supernova be located by its neutrinos? Beacom & Vogel: Can a supernova be located by its neutrinos? [astro-ph/ ] [astro-ph/ ] Tomàs, Semikoz, Raffelt, Kachelriess & Dighe: Supernova pointing with Tomàs, Semikoz, Raffelt, Kachelriess & Dighe: Supernova pointing with low- and high-energy neutrino detectors [hep-ph/ ] low- and high-energy neutrino detectors [hep-ph/ ] SK SK 30 Neutron tagging efficiency 90 % None 7.8º3.2º 1.4º0.6º 95% CL half-cone opening angle

35 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China IceCube as a Supernova Neutrino Detector Each optical module (OM) picks up Cherenkov light from its neighborhood. SN appears as correlated noise. About 300 About 300 Cherenkov Cherenkov photons photons per OM per OM from a SN from a SN at 10 kpc at 10 kpc Noise Noise per OM per OM < 500 Hz < 500 Hz Total of Total of 4800 OMs 4800 OMs in IceCube in IceCube IceCube SN signal at 10 kpc, based on a numerical Livermore model [Dighe, Keil & Raffelt, hep-ph/ ] Method first discussed by Halzen, Jacobsen & Zas astro-ph/

36 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China LAGUNA - Approved FP7 Design Study Large Apparati for Grand Unification and Neutrino Astrophysics (see also arXiv: )

37 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Supernova Neutrinos 20 Jahre nach SN 1987A Neutrinos From All Cosmic Supernovae Neutrinos From All Cosmic Supernovae

38 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Diffuse Background Flux of SN Neutrinos 1 SNu ~ 4 L / L,B Average neutrino luminosity of galaxies ~ photon luminosity 1 SNu = 1 SN / L sun,B / 100 years 1 SNu = 1 SN / L sun,B / 100 years L sun,B = 0.54 L sun = erg/s L sun,B = 0.54 L sun = erg/s E ~ erg per core-collapse SN E ~ erg per core-collapse SN For galaxies, average nuclear & gravitational energy release comparable Photons come from nuclear energy Photons come from nuclear energy Neutrinos from gravitational energy Neutrinos from gravitational energy Present-day SN rate of ~ 1 SNu, extrapolated to the entire universe, Present-day SN rate of ~ 1 SNu, extrapolated to the entire universe, corresponds to e flux of ~ 1 cm 2 s 1 corresponds to e flux of ~ 1 cm 2 s 1 Realistic flux is dominated by much larger early star-formation rate Realistic flux is dominated by much larger early star-formation rate Upper limit ~ 54 cm 2 s 1 Upper limit ~ 54 cm 2 s 1 [Kaplinghat et al., astro-ph/ ] [Kaplinghat et al., astro-ph/ ] Realistic estimate ~ 10 cm 2 s 1 Realistic estimate ~ 10 cm 2 s 1 [Hartmann & Woosley, Astropart. Phys. 7 (1997) 137] [Hartmann & Woosley, Astropart. Phys. 7 (1997) 137] Measurement would tell us about early history of star formation Measurement would tell us about early history of star formation

39 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Experimental Limits on Relic Supernova Neutrinos Cline, astro-ph/ Upper-limit flux of Upper-limit flux of Kaplinghat et al., Kaplinghat et al., astro-ph/ astro-ph/ Integrated 54 cm -2 s -1 Integrated 54 cm -2 s -1 Super-K upper limit Super-K upper limit 29 cm -2 s -1 for 29 cm -2 s -1 for Kaplinghat et al. spectrum Kaplinghat et al. spectrum [hep-ex/ ] [hep-ex/ ]

40 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China DSNB Measurement with Neutron Tagging Beacom & Vagins, hep-ph/ [Phys. Rev. Lett., 93:171101, 2004] Pushing the boundaries of neutrino astronomy to cosmological distances Future large-scale scintillator detectors (e.g. LENA with 50 kt) Inverse beta decay reaction tagged Inverse beta decay reaction tagged Location with smaller reactor flux Location with smaller reactor flux (e.g. Pyhäsalmi in Finland) could (e.g. Pyhäsalmi in Finland) could allow for lower threshold allow for lower threshold

41 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Supernova Neutrinos 20 Jahre nach SN 1987A Oscillations of Supernova Neutrinos Oscillations of Supernova Neutrinos

42 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Structure of Supernova Neutrino Signal 1. Collapse (infall phase) 2. Shock break out 3. Matter accretion 4. Kelvin-Helmholtz cooling Trapsneutrinosandleptonnumber of outer corelayers

43 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Neutronization Burst as a Standard Candle Different Mass Neutrino Transport Nuclear EoS Kachelriess, Tomàs, Buras, Janka, Marek & Rampp, astro-ph/ If mixing scenario is known, perhaps best method to determine SN distance, especially if obscured (better than 5-10%) 5-10%)

44 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Flavor-Dependent Fluxes and Spectra Broad characteristics Duration a few seconds Duration a few seconds E ~ MeV E ~ MeV E increases with time E increases with time Hierarchy of energies Hierarchy of energies Approximate equipartition Approximate equipartition of energy between flavors of energy between flavors Livermore numerical model ApJ 496 (1998) 216 Prompt e deleptonizationburst e e x _ However, in traditional simulations transport of and schematic Incomplete microphysics Incomplete microphysics Crude numerics to couple Crude numerics to couple neutrino transport with neutrino transport with hydro code hydro code

45 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Flavor-Dependent Neutrino Fluxes vs. Equation of State Kitaura, Janka & Hillebrandt, Explosions of O-Ne-Mg cores, the Crab supernova, and subluminous Type II-P supernovae, astro-ph/ Wolff & Hillebrandt nuclear EoS (stiff)Lattimer & Swesty nuclear EoS (soft)

46 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Level-Crossing Diagram in a SN Envelope Dighe & Smirnov, Identifying the neutrino mass spectrum from a supernova neutrino burst, astro-ph/ Normal mass hierarchy Inverted mass hierarchy

47 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Spectra Emerging from Supernovae Primary fluxes Primary fluxes for for for After leaving the After leaving the supernova envelope, supernova envelope, the fluxes are the fluxes are partially swapped partially swapped Normal Normal Inverted Inverted sin 2 (2 13 ) Any Any Mass ordering sin 2 ( 12 ) cos 2 ( 12 ) 0.7 sin 2 ( 12 ) 0.3 cos 2 ( 12 ) Case A B C Survival probability

48 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Oscillation of Supernova Anti-Neutrinos Measured spectrum at a detector like Measured spectrum at a detector like Super-Kamiokande Super-Kamiokande Assumed flux parameters Flux ratio Flux ratio Mixing parameters (Dighe, Kachelriess, Keil, Raffelt, Semikoz, Tomàs), (Dighe, Kachelriess, Keil, Raffelt, Semikoz, Tomàs), hep-ph/ , hep-ph/ , hep-ph/ , hep-ph/ hep-ph/ , hep-ph/ , hep-ph/ , hep-ph/ No oscillations Oscillations in SN envelope Earth effects included

49 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China One detector observes SN shadowed by Earth Model-Independent Strategies for Observing Earth Effects Case 1: Another detector Another detector observes SN directly observes SN directly Identify Earth effects Identify Earth effects by comparing signals by comparing signals Dighe, Keil & Raffelt, Identifying Earth matter effects on supernova neutrinos at a single detector [hep-ph/ ] Case2: Identify wiggles in signal of single detector Case2: Identify wiggles in signal of single detector Problem: Smearing by limited energy resolution Problem: Smearing by limited energy resolution Water Cherenkov Water Cherenkov Need megaton detector Need megaton detector with ~ 10 5 events with ~ 10 5 events Scintillator detector Scintillator detector ~ 2000 events ~ 2000 events may be enough may be enough If 13-mixing angle is known to be large, e.g. from Double Chooz, observed wiggles in energy spectrum signify normal mass hierarchy

50 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Supernova Shock Propagation and Neutrino Oscillations Schirato & Fuller: Connection between supernova shocks, flavor transformation, and the neutrino signal [astro-ph/ ] R. Tomàs, M. Kachelriess, G. Raffelt, A. Dighe, H.-T. Janka & L. Scheck: Neutrino signatures of supernova forward and reverse shock propagation [astro-ph/ ] Resonance density for

51 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Shock-Wave Propagation in IceCube Choubey, Harries & Ross, Probing neutrino oscillations from supernovae shock waves via the IceCube detector, astro-ph/ Normal Hierarchy Inverted Hierarchy No shockwave Inverted Hierarchy Forward shock Inverted Hierarchy Forward & reverse shock

52 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Supernova Neutrinos 20 Jahre nach SN 1987A Collective Supernova Neutrino Oscillations

53 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Neutrino Density Streaming off a Supernova Core Typical luminosity in one neutrino species Corresponds to a neutrino number density of Current-current structure of weak interaction causes suppression of effective potential for collinear-moving particles Nu-nu refractive effect decreases as Appears to be negligible Equivalent Neutrino density R Nu-nu refraction R

54 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Collective Effects in Neutrino Flavor Oscillations Collapsed supernova core or accretion torus of merging neutron stars: Neutrino flux very dense: Up to cm 3 Neutrino flux very dense: Up to cm 3 Neutrino-neutrino interaction energy Neutrino-neutrino interaction energy much larger than vacuum oscillation frequency much larger than vacuum oscillation frequency Large matter effect of neutrinos on each Large matter effect of neutrinos on each other other Non-linear oscillation effects Non-linear oscillation effects Assume 80% anti-neutrinos Assume 80% anti-neutrinos Vacuum oscillation frequency Vacuum oscillation frequency = 0.3 km 1 = 0.3 km 1 Neutrino-neutrino interaction Neutrino-neutrino interaction energy at nu sphere (r = 10 km) energy at nu sphere (r = 10 km) = km 1 = km 1 Falls off approximately as r 4 Falls off approximately as r 4 (geometric flux dilution and nus (geometric flux dilution and nus become more co-linear) become more co-linear)

55 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Survival probability e NormalHierarchy atm m 2 13 close 13 close to Chooz limit InvertedHierarchy No nu-nu effect No Self-Induced Flavor Oscillations of SN Neutrinos Realistic nu-nu effect Bipolarcollectiveoscillations(single-angle approximation) approximation) MSW Realistic nu-nu effect MSWeffect

56 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Mass Hierarchy at Extremely Small Theta-13 Dasgupta, Dighe & Mirizzi, arXiv: Ratio of spectra in two water Cherenkov detectors (0.4 Mton), one shadowed by the Earth, the other not Using Earth matter effects to diagnose transformations

57 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Collective SN neutrino oscillations (I) Bipolar collective transformations important, even for dense matter Duan, Fuller & Qian Duan, Fuller & Qian astro-ph/ astro-ph/ Numerical simulations Including multi-angle effects Including multi-angle effects Discovery of spectral splits Discovery of spectral splits Duan, Fuller, Carlson & Qian Duan, Fuller, Carlson & Qian astro-ph/ , astro-ph/ , Pendulum in flavor space Pendulum in flavor space Collective pair annihilation Collective pair annihilation Pure precession mode Pure precession mode Hannestad, Raffelt, Sigl & Wong Hannestad, Raffelt, Sigl & Wong astro-ph/ astro-ph/ Duan, Fuller, Carlson & Qian Duan, Fuller, Carlson & Qian astro-ph/ astro-ph/ Self-maintained coherence vs. self-induced decoherence caused by multi-angle effects Sawyer, hep-ph/ , Sawyer, hep-ph/ , Raffelt & Sigl, hep-ph/ Raffelt & Sigl, hep-ph/ Esteban-Pretel, Pastor, Tomàs, Esteban-Pretel, Pastor, Tomàs, Raffelt & Sigl, arXiv: Raffelt & Sigl, arXiv: Theory of spectral splits in terms of adiabatic evolution in rotating frame Raffelt & Smirnov, Raffelt & Smirnov, arXiv: , arXiv: , Duan, Fuller, Carlson & Qian Duan, Fuller, Carlson & Qian arXiv: , arXiv: , Independent numerical simulations Fogli, Lisi, Marrone & Mirizzi Fogli, Lisi, Marrone & Mirizzi arXiv: arXiv:

58 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Collective SN neutrino oscillations (II) Second-order mu-tau refractive effect important in three-flavor context Esteban-Pretel, Pastor, Tomàs, Esteban-Pretel, Pastor, Tomàs, Raffelt & Sigl, arXiv: Raffelt & Sigl, arXiv: Three-flavor effects in O-Ne-Mg SNe on neutronization burst (MSW-prepared spectral double split) Duan, Fuller, Carlson & Qian, Duan, Fuller, Carlson & Qian, arXiv: arXiv: Dasgupta, Dighe, Mirrizzi & Raffelt, Dasgupta, Dighe, Mirrizzi & Raffelt, arXiv: arXiv: Theory of three-flavor collective oscillations Dasgupta & Dighe, Dasgupta & Dighe, arXiv: arXiv: Identifying the neutrino mass hierarchy at extremely small Theta-13 Dasgupta, Dighe & Mirizzi, Dasgupta, Dighe & Mirizzi, arXiv: arXiv: But for high density, conversions suppressed by geometric effect Esteban-Pretel, Mirizzi, Pastor, Esteban-Pretel, Mirizzi, Pastor, Tomàs, Raffelt, Serpico & Sigl, Tomàs, Raffelt, Serpico & Sigl, arXiv: arXiv: Collective oscillations along flux lines for non-spherical geometry Dasgupta, Dighe, Mirizzi & Raffelt, Dasgupta, Dighe, Mirizzi & Raffelt, arXiv: arXiv:

59 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Neutrino Oscillations in a Neutrino Background f Z W, Z f Neutrinos in a medium suffer flavor-dependent refraction(Wolfenstein, PRD 17:2369, 1978) PRD 17:2369, 1978) Z If neutrinos form the background, the refractive index has offdiagonal elements (Pantaleone, PLB 287:128, 1992) PLB 287:128, 1992) One can not operationally distinguish between One can not operationally distinguish between beam and background beam and background Problem is fundamentally nonlinear Problem is fundamentally nonlinear

60 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Matrices of Density in Flavor Space Neutrino quantum field Neutrino quantum field Spinors in flavor space Spinors in flavor space Quantum states (amplitudes) Variables for discussing neutrino flavor oscillations Matrices of densities (analogous to occupation numbers) Quadratic quantities, required for dealing with decoherence, collisions, Pauli-blocking, nu-nu-refraction, etc. Sufficient for beam experiments Destruction operators for (anti)neutrinos Neutrinos Anti-neutrinos

61 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China General Equations of Motion Usual matter effect with Vacuum oscillations Vacuum oscillations M is neutrino mass matrix M is neutrino mass matrix Note opposite sign between Note opposite sign between neutrinos and antineutrinos neutrinos and antineutrinos Nonlinear nu-nu effects are important when nu-nu interaction energy exceeds typical vacuum oscillation frequency (Do not compare with matter effect!)

62 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Oscillations of Neutrinos plus Antineutrinos in a Box Equal and densities, single energy E, with Equal self terms Opposite vacuum oscillations Pendulum in flavor space Inverted mass hierarchy Inverted mass hierarchy Inverted pendulum Inverted pendulum Unstable even for small mixing angle Unstable even for small mixing angle Normal mass hierarchy Normal mass hierarchy Small-amplitude oscillations Small-amplitude oscillations

63 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Flavor Conversion Without Flavor Mixing? This is no real flavor conversion, This is no real flavor conversion, rather a coherent pair conversion rather a coherent pair conversion Occurs anyway at second order G F Occurs anyway at second order G F Coherent speed-up effect (Sawyer) Coherent speed-up effect (Sawyer) Equal e and e densities in a box (inverted hierarchy) Inverted pendulum: Time to fall depends Time to fall depends logarithmically on logarithmically on small initial angle small initial angle Stays up forever only Stays up forever only for = 0 for = 0 Unstable by quantum Unstable by quantum uncertainty relation uncertainty relation (How long can a pencil (How long can a pencil stand on its tip?) stand on its tip?) Not clear (to me) if coherent transformations can be triggered by quantum fluctuations alone (mixing angle = 0) _

64 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Supernova Neutrino Conversion Neutrinos in a box Neutrinosstreaming off a supernovacore Permanent pendular oscillations Complete conversion Nu-nu interaction energy Nu-nu interaction energy decreases decreases Pendulums moment of Pendulums moment of inertia 1 increases inertia 1 increases Conservation of angular Conservation of angular momentum momentum kinetic energy decreases kinetic energy decreases amplitude decreases 1/2 amplitude decreases 1/2 Envelope declines as 1/2 r 2

65 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Flavor Conversion in Toy Supernova Pendular Oscillations Assume 80% anti-neutrinos Assume 80% anti-neutrinos Vacuum oscillation frequency Vacuum oscillation frequency = 0.3 km 1 = 0.3 km 1 Neutrino-neutrino interaction Neutrino-neutrino interaction energy at nu sphere (r = 10 km) energy at nu sphere (r = 10 km) = km 1 = km 1 Falls off approximately as r 4 Falls off approximately as r 4 (geometric flux dilution and nus (geometric flux dilution and nus become more co-linear) become more co-linear) Decline of oscillation amplitude explained in pendulum analogy by inreasing moment of inertia (Hannestad, Raffelt, Sigl & Wong astro-ph/ ) astro-ph/ )

66 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Synchronized vs. Pendular Oscillations Ensemble of unequal densities (antineutrino fraction < 1) Ensemble of unequal densities (antineutrino fraction < 1) Equal energies (equal oscillation frequency m 2 /2E) Equal energies (equal oscillation frequency m 2 /2E) Interaction energy Interaction energy Free oscillations Pendular oscillations Synchronized oscillations

67 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Synchronized vs. Pendular Oscillations Free oscillations Pendular oscillations Synchronized oscillations SupernovaCore R = km R 200 km

68 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Pendulum in Flavor Space Mass direction in flavor space Precession (synchronized oscillation) Nutation(pendular oscillation) oscillation) Spin (Lepton Asymmetry) Very asymmetric system Very asymmetric system - Large spin - Large spin - Almost pure precession - Almost pure precession - Fully synchronized oscillations - Fully synchronized oscillations Perfectly symmetric system Perfectly symmetric system - No spin - No spin - Simple spherical pendulum - Simple spherical pendulum - Fully pendular oscillation - Fully pendular oscillation [Hannestad, Raffelt, Sigl, Wong: astro-ph/ ] astro-ph/ ] Polarization vector for neutrinos plus antineutrinos

69 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Multi-Energy and Multi-Angle Effects Different modes oscillate Different modes oscillate with different frequencies with different frequencies kinematical decoherence kinematical decoherence Self-maintained coherence Self-maintained coherence by nu-nu interactions by nu-nu interactions Can lead to spectral split Can lead to spectral split Isotropic matter background affects all modes the same Multi-angle effects for non-isotropic nu distribution (streaming from SN): Different modes should oscillate differently kinematical decoherence However, nu-nu interaction can lead to Angular synchronization Angular synchronization (quasi-single angle behavior) (quasi-single angle behavior) Self-accelerated multi-angle Self-accelerated multi-angle decoherence decoherence

70 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Spectral Split (Stepwise Spectral Swapping) Fogli, Lisi, Marrone & Mirizzi, arXiv: Initial fluxes at nu sphere Aftercollectivetrans-formation For explanation see Raffelt & Smirnov arXiv: Duan, Fuller, Carlson & Qian arXiv:

71 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Spectral split in terms of the variable Collective conversion of thermal spectra of e and e as in a supernova _ Energy spectrum Spectrum in terms of m 2 /2E Flavor lepton number conservation: Equal integrals Raffelt & Smirnov, arXiv:

72 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China SN 1006 Looking forward to the next galactic supernova May take a long time No problem Lots of theoretical work to do!


Download ppt "Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China Neutrinos and the stars."

Similar presentations


Ads by Google