Presentation is loading. Please wait.

Presentation is loading. Please wait.

Georg Raffelt, Max-Planck-Institut für Physik, München Totsuka Memorial Symposium, 9 June 2009, Tokyo Supernova Neutrinos Georg Raffelt, Max-Planck-Institut.

Similar presentations


Presentation on theme: "Georg Raffelt, Max-Planck-Institut für Physik, München Totsuka Memorial Symposium, 9 June 2009, Tokyo Supernova Neutrinos Georg Raffelt, Max-Planck-Institut."— Presentation transcript:

1 Georg Raffelt, Max-Planck-Institut für Physik, München Totsuka Memorial Symposium, 9 June 2009, Tokyo Supernova Neutrinos Georg Raffelt, Max-Planck-Institut für Physik, München Yoji Totsuka Memorial Symposium 9 June 2009, University of Tokyo

2 Georg Raffelt, Max-Planck-Institut für Physik, München Totsuka Memorial Symposium, 9 June 2009, Tokyo Supernova Neutrinos

3 Georg Raffelt, Max-Planck-Institut für Physik, München Totsuka Memorial Symposium, 9 June 2009, Tokyo Sanduleak Large Magellanic Cloud Distance 50 kpc ( light years) Tarantula Nebula Supernova 1987A 23 February 1987 Supernova 1987A 23 February 1987

4 Georg Raffelt, Max-Planck-Institut für Physik, München Totsuka Memorial Symposium, 9 June 2009, Tokyo Helium-burning star HeliumBurning HydrogenBurning Main-sequence star Hydrogen Burning Onion structure Degenerate iron core: 10 9 g cm g cm 3 T K T K M Fe 1.5 M sun M Fe 1.5 M sun R Fe 8000 km R Fe 8000 km Collapse (implosion) Stellar Collapse and Supernova Explosion

5 Georg Raffelt, Max-Planck-Institut für Physik, München Totsuka Memorial Symposium, 9 June 2009, Tokyo Collapse (implosion) Explosion Newborn Neutron Star ~ 50 km Proto-Neutron Star nuc g cm 3 nuc g cm 3 T 30 MeV NeutrinoCooling Stellar Collapse and Supernova Explosion

6 Georg Raffelt, Max-Planck-Institut für Physik, München Totsuka Memorial Symposium, 9 June 2009, Tokyo Newborn Neutron Star ~ 50 km Proto-Neutron Star nuc g cm 3 nuc g cm 3 T 30 MeV NeutrinoCooling Gravitational binding energy Gravitational binding energy E b erg 17% M SUN c 2 E b erg 17% M SUN c 2 This shows up as This shows up as 99% Neutrinos 99% Neutrinos 1% Kinetic energy of explosion 1% Kinetic energy of explosion (1% of this into cosmic rays) (1% of this into cosmic rays) 0.01% Photons, outshine host galaxy 0.01% Photons, outshine host galaxy Neutrino luminosity Neutrino luminosity L erg / 3 sec L erg / 3 sec L SUN L SUN While it lasts, outshines the entire While it lasts, outshines the entire visible universe visible universe Stellar Collapse and Supernova Explosion

7 Georg Raffelt, Max-Planck-Institut für Physik, München Totsuka Memorial Symposium, 9 June 2009, Tokyo Diffuse Supernova Neutrino Background (DSNB) Supernova rate approximately Supernova rate approximately 1 SN / L Sun,B / 100 years 1 SN / L Sun,B / 100 years L sun,B = 0.54 L sun = erg/s L sun,B = 0.54 L sun = erg/s E ~ erg per core-collapse E ~ erg per core-collapse Core-collapse neutrino luminosity of typical galaxy comparable to photon luminosity (from nuclear burning) Core-collapse rate somewhat larger in the past. Estimated present-day flux ~ 10 cm 1 s 1 flux ~ 10 cm 1 s 1 Beacom & Vagins, hep-ph/ [Phys. Rev. Lett., 93:171101, 2004] Pushing the boundaries of neutrino astronomy to cosmological distances

8 Georg Raffelt, Max-Planck-Institut für Physik, München Totsuka Memorial Symposium, 9 June 2009, Tokyo Gamow & Schoenberg, Phys. Rev. 58:1117 (1940)

9 Georg Raffelt, Max-Planck-Institut für Physik, München Totsuka Memorial Symposium, 9 June 2009, Tokyo Neutrino Signal of Supernova 1987A Within clock uncertainties, signals are contemporaneous Kamiokande-II (Japan) Water Cherenkov detector 2140 tons Clock uncertainty 1 min Irvine-Michigan-Brookhaven (US) Water Cherenkov detector 6800 tons Clock uncertainty 50 ms Baksan Scintillator Telescope (Soviet Union), 200 tons Random event cluster ~ 0.7/day Clock uncertainty +2/-54 s

10 Georg Raffelt, Max-Planck-Institut für Physik, München Totsuka Memorial Symposium, 9 June 2009, Tokyo Core-Collapse SN Rate in the Milky Way Gamma rays from 26 Al (Milky Way) Historical galactic SNe (all types) SN statistics in external galaxies No galactic neutrino burst Core-collapse SNe per century van den Bergh & McClure (1994) Cappellaro & Turatto (2000) Diehl et al. (2006) Tammann et al. (1994) Strom (1994) 90 % CL (25 y obserservation) Alekseev et al. (1993) References: van den Bergh & McClure, ApJ 425 (1994) 205. Cappellaro & Turatto, astro- ph/ Diehl et al., Nature 439 (2006) 45. Strom, Astron. Astrophys. 288 (1994) L1. Tammann et al., ApJ 92 (1994) 487. Alekseev et al., JETP 77 (1993) 339 and my update.

11 Georg Raffelt, Max-Planck-Institut für Physik, München Totsuka Memorial Symposium, 9 June 2009, Tokyo High and Low Supernova Rates in Nearby Galaxies M31 (Andromeda) D = 780 kpc Last Observed Supernova: 1885A NGC 6946 D = (5.5 ± 1) Mpc Observed Supernovae: 1917A, 1939C, 1948B, 1968D, 1969P, 1980K, 2002hh, 2004et, 2008S

12 Georg Raffelt, Max-Planck-Institut für Physik, München Totsuka Memorial Symposium, 9 June 2009, Tokyo Large Detectors for Supernova Neutrinos Super-Kamiokande (10 4 ) KamLAND (400) MiniBooNE(200) In brackets events for a fiducial SN at distance 10 kpc LVD (400) Borexino (100) IceCube (10 6 ) Baksan Baksan (100) (100)

13 Georg Raffelt, Max-Planck-Institut für Physik, München Totsuka Memorial Symposium, 9 June 2009, Tokyo Super-Kamiokande Neutrino Detector

14 Georg Raffelt, Max-Planck-Institut für Physik, München Totsuka Memorial Symposium, 9 June 2009, Tokyo Simulated Supernova Signal at Super-Kamiokande Simulation for Super-Kamiokande SN signal at 10 kpc, based on a numerical Livermore model [Totani, Sato, Dalhed & Wilson, ApJ 496 (1998) 216] AccretionPhase Kelvin-Helmholtz Cooling Phase

15 Georg Raffelt, Max-Planck-Institut für Physik, München Totsuka Memorial Symposium, 9 June 2009, Tokyo IceCube Neutrino Telescope at the South Pole 1 km 3 antarctic ice, instrumented 1 km 3 antarctic ice, instrumented with 4800 photomultipliers with 4800 photomultipliers 59 of 80 strings installed (2009) 59 of 80 strings installed (2009) Completion until 2011 foreseen Completion until 2011 foreseen

16 Georg Raffelt, Max-Planck-Institut für Physik, München Totsuka Memorial Symposium, 9 June 2009, Tokyo IceCube as a Supernova Neutrino Detector Each optical module (OM) picks up Cherenkov light from its neighborhood. SN appears as correlated noise. About 300 About 300 Cherenkov Cherenkov photons photons per OM per OM from a SN from a SN at 10 kpc at 10 kpc Noise Noise per OM per OM < 300 Hz < 300 Hz Total of Total of 4800 Oms 4800 Oms foreseen foreseen in IceCube in IceCube IceCube SN signal at 10 kpc, based on a numerical Livermore model [Dighe, Keil & Raffelt, hep-ph/ ] Method first discussed by Pryor, Roos & Webster, Pryor, Roos & Webster, ApJ 329:355 (1988) ApJ 329:355 (1988) Halzen, Jacobsen & Zas Halzen, Jacobsen & Zas astro-ph/ astro-ph/

17 Georg Raffelt, Max-Planck-Institut für Physik, München Totsuka Memorial Symposium, 9 June 2009, Tokyo LAGUNA - Ongoing European (FP7) Design Study Large Apparati for Grand Unification and Neutrino Astrophysics (see also arXiv: )

18 Georg Raffelt, Max-Planck-Institut für Physik, München Totsuka Memorial Symposium, 9 June 2009, Tokyo Reaching Beyond the Milky Way: Five-Megaton Detector Modular 5-Mt underwater detector for proton decay, long-baseline oscillation experiments, atmospheric neutrinos, and low-energy burst detection

19 Georg Raffelt, Max-Planck-Institut für Physik, München Totsuka Memorial Symposium, 9 June 2009, Tokyo SuperNova Early Warning System (SNEWS) Neutrino observation can alert astronomers several hours in advance to a supernova. BNL Super-K Alert Others ? LVD IceCube Supernova 1987A Early Light Curve

20 Georg Raffelt, Max-Planck-Institut für Physik, München Totsuka Memorial Symposium, 9 June 2009, Tokyo Looking forward Probing Supernova Physics

21 Georg Raffelt, Max-Planck-Institut für Physik, München Totsuka Memorial Symposium, 9 June 2009, Tokyo Delayed Explosion Wilson, Proc. Univ. Illinois Meeting on Num. Astrophys.(1982) Bethe & Wilson, ApJ 295 (1985) 14

22 Georg Raffelt, Max-Planck-Institut für Physik, München Totsuka Memorial Symposium, 9 June 2009, Tokyo Standing Accretion Shock Instability (SASI) Mezzacappa et al.,

23 Georg Raffelt, Max-Planck-Institut für Physik, München Totsuka Memorial Symposium, 9 June 2009, Tokyo Gravitational Waves from Core-Collapse Supernovae Müller, Rampp, Buras, Janka, & Shoemaker, Müller, Rampp, Buras, Janka, & Shoemaker, Towards gravitational wave signals from Towards gravitational wave signals from realistic core collapse supernova models, realistic core collapse supernova models, astro-ph/ astro-ph/ The gravitational-wave signal from convection is a generic and dominating feature Bounce Convection Asymmetric neutrino emission

24 Georg Raffelt, Max-Planck-Institut für Physik, München Totsuka Memorial Symposium, 9 June 2009, Tokyo Luminosity Variation Detectable in Neutrinos? Marek, Janka & Müller, arXiv: Hemispheric averagePolar direction Neutrino events in 10 ms bins for SN (10 kpc) during accretion phase: Super-K 70 1 ~ 10% Super-K 70 1 ~ 10% 30 x Super-K ~ 2% 30 x Super-K ~ 2% IceCube ~ 1% IceCube ~ 1% Detecting the spectrum of luminosity variations can Detect SASI instability in neutrinos Detect SASI instability in neutrinos Provide equation-of-state Provide equation-of-state information information

25 Georg Raffelt, Max-Planck-Institut für Physik, München Totsuka Memorial Symposium, 9 June 2009, Tokyo Looking forward Flavor Oscillations of Supernova Neutrinos

26 Georg Raffelt, Max-Planck-Institut für Physik, München Totsuka Memorial Symposium, 9 June 2009, Tokyo Neutrino Flavor Oscillations Two-flavor mixing Bruno Pontecorvo (1913 – 1993) Invented nu oscillations Each mass eigenstate propagates as with Phase difference implies flavor oscillations OscillationLength sin 2 (2 ) Probability e Probability e z

27 Georg Raffelt, Max-Planck-Institut für Physik, München Totsuka Memorial Symposium, 9 June 2009, Tokyo Three-Flavor Neutrino Parameters CP-violating phase CP-violating phase Solar Atmospheric CHOOZSolar/KamLAND 2 ranges hep-ph/ Atmospheric/K2K e e 1 SunNormal2 3 Atmosphere e e 1 SunInverted2 3 Atmosphere Tasks and Open Questions Precision for 12 and 23 Precision for 12 and 23 How large is 13 ? How large is 13 ? CP-violating phase ? CP-violating phase ? Mass ordering ? Mass ordering ? (normal vs inverted) (normal vs inverted) Absolute masses ? Absolute masses ? (hierarchical vs degenerate) (hierarchical vs degenerate) Dirac or Majorana ? Dirac or Majorana ?

28 Georg Raffelt, Max-Planck-Institut für Physik, München Totsuka Memorial Symposium, 9 June 2009, Tokyo Neutrino Oscillations in Matter Level crossing possible in a medium with a gradient (MSW effect) Level crossing possible in a medium with a gradient (MSW effect) - For solar nus large flavor conversion anyway due to large mixing - For solar nus large flavor conversion anyway due to large mixing - Still important for 13-oscillations in supernova envelope - Still important for 13-oscillations in supernova envelope Breaks degeneracy between and /2 (dark vs light side) Breaks degeneracy between and /2 (dark vs light side) - 12 mass ordering for solar nus established - 12 mass ordering for solar nus established - 13 mass ordering (normal vs inverted) at future LBL or SN - 13 mass ordering (normal vs inverted) at future LBL or SN Discriminates against sterile nus in atmospheric oscillations Discriminates against sterile nus in atmospheric oscillations CP asymmetry in LBL, to be distinguished from intrinsic CP violation CP asymmetry in LBL, to be distinguished from intrinsic CP violation Prevents flavor conversion in a SN core and within shock wave Prevents flavor conversion in a SN core and within shock wave Strongly affects sterile nu production in SN or early universe Strongly affects sterile nu production in SN or early universe Lincoln Wolfenstein f Z W, Z f Neutrinos in a medium suffer flavor-dependent refraction (PRD 17:2369, 1978)

29 Georg Raffelt, Max-Planck-Institut für Physik, München Totsuka Memorial Symposium, 9 June 2009, Tokyo Supernova Shock Propagation and Neutrino Oscillations Schirato & Fuller: Connection between supernova shocks, flavor transformation, and the neutrino signal [astro-ph/ ] R. Tomàs, M. Kachelriess, G. Raffelt, A. Dighe, H.-T. Janka & L. Scheck: Neutrino signatures of supernova forward and reverse shock propagation [astro-ph/ ] Resonance density for

30 Georg Raffelt, Max-Planck-Institut für Physik, München Totsuka Memorial Symposium, 9 June 2009, Tokyo Shockwave Effects in a Megaton Cherenkov Detector

31 Georg Raffelt, Max-Planck-Institut für Physik, München Totsuka Memorial Symposium, 9 June 2009, Tokyo Neutrino Density Streaming off a Supernova Core Typical luminosity in one neutrino species Corresponds to a neutrino number density of Current-current structure of weak interaction causes suppression of effective potential for collinear-moving particles Nu-nu refractive effect decreases as Appears to be negligible Equivalent Neutrino density R Nu-nu refraction R Non-linear neutrino-neutrino effect is important, even if matter density is large Non-linear neutrino-neutrino effect is important, even if matter density is large

32 Georg Raffelt, Max-Planck-Institut für Physik, München Totsuka Memorial Symposium, 9 June 2009, Tokyo Collective SN Neutrino Oscillations since 2006 Two seminal papers in 2006 triggered a torrent of activities Duan, Fuller, Qian, astro-ph/ , Duan et al. astro-ph/ Duan, Fuller, Carlson & Qian, astro-ph/ , , arXiv: , Duan, Fuller & Qian, arXiv: , , Duan, Fuller & Carlson, arXiv: Duan & Kneller, arXiv: Hannestad, Raffelt, Sigl & Wong, astro-ph/ Balantekin & Pehlivan, astro-ph/ Balantekin, Gava & Volpe, arXiv: Gava & Volpe, arXiv: Gava, Kneller, Volpe & McLaughlin, arXiv: Raffelt & Sigl, hep-ph/ Raffelt & Smirnov, arXiv: , Esteban-Pretel, Pastor, Tomàs, Raffelt & Sigl, arXiv: , Esteban-Pretel, Mirizzi, Pastor, Tomàs, Raffelt, Serpico & Sigl, arXiv: Raffelt, arXiv: Fogli, Lisi, Marrone & Mirizzi, arXiv: Fogli, Lisi, Marrone & Tamborra, arXiv: Lunardini, Müller & Janka, arXiv: Dasgupta & Dighe, arXiv: Dasgupta, Dighe & Mirizzi, arXiv: Dasgupta, Dighe, Mirizzi & Raffelt, arXiv: , Dasgupta, Dighe, Raffelt & Smirnov, arXiv: Sawyer, arXiv: Chakraborty, Choubey, Dasgupta & Kar, arXiv: Blennow, Mirizzi & Serpico, arXiv: Wei Liao, arXiv: ,

33 Georg Raffelt, Max-Planck-Institut für Physik, München Totsuka Memorial Symposium, 9 June 2009, Tokyo Survival probability e NormalHierarchy atm m 2 13 close 13 close to Chooz limit InvertedHierarchy No nu-nu effect No Self-Induced Flavor Oscillations of SN Neutrinos Realistic nu-nu effect Bipolarcollectiveoscillations(single-angle approximation) approximation) MSW Realistic nu-nu effect MSWeffect

34 Georg Raffelt, Max-Planck-Institut für Physik, München Totsuka Memorial Symposium, 9 June 2009, Tokyo Multiple Spectral Splits (Cooling-Phase Example) Dasgupta, Dighe, Raffelt & Smirnov, arXiv: Inverted Hierarchy Normal Hierarchy

35 Georg Raffelt, Max-Planck-Institut für Physik, München Totsuka Memorial Symposium, 9 June 2009, Tokyo Multiple Spectral Splits in the Variable Dasgupta, Dighe, Raffelt & Smirnov, arXiv: arXiv: Given is the flux spectrum f(E) for each flavor Use m 2 /2E to label modes Label anti-neutrinos with antineutrinosneutrinos Define spectrum as Neutrinos Antineutrinos Swaps develop around every positive spectral crossing Each swap flanked by two splits

36 Georg Raffelt, Max-Planck-Institut für Physik, München Totsuka Memorial Symposium, 9 June 2009, Tokyo Flavor Pendulum Dasgupta, Dighe, Raffelt & Smirnov, arXiv: For movies see Single positive crossing (potential energy at a maximum) Single negative crossing (potential energy at a minimum)

37 Georg Raffelt, Max-Planck-Institut für Physik, München Totsuka Memorial Symposium, 9 June 2009, Tokyo Decreasing Neutrino Density Certain initial neutrino density Four times smaller initial neutrino density Dasgupta, Dighe, Raffelt & Smirnov, arXiv: For movies see

38 Georg Raffelt, Max-Planck-Institut für Physik, München Totsuka Memorial Symposium, 9 June 2009, Tokyo Supernova Cooling-Phase Example Normal Hierarchy Inverted Hierarchy Dasgupta, Dighe, Raffelt & Smirnov, arXiv: For movies see

39 Georg Raffelt, Max-Planck-Institut für Physik, München Totsuka Memorial Symposium, 9 June 2009, Tokyo Multiple Spectral Splits (Cooling-Phase Example) Dasgupta, Dighe, Raffelt & Smirnov, arXiv: Inverted Hierarchy Normal Hierarchy

40 Georg Raffelt, Max-Planck-Institut für Physik, München Totsuka Memorial Symposium, 9 June 2009, Tokyo Questions and Opportunities Self-induced collective oscillations occur even Self-induced collective oscillations occur even for very small 13-mixing (instability!) for very small 13-mixing (instability!) Do matter-density fluctuations have any Do matter-density fluctuations have any realistic impact? realistic impact? Theoretical understanding and role of Theoretical understanding and role of multi-angle effects largely missing multi-angle effects largely missing Observation of spectral split or swap indication Observation of spectral split or swap indication can provide signature for mass hierarchy can provide signature for mass hierarchy and nontrivial neutrino propagation dynamics and nontrivial neutrino propagation dynamics

41 Georg Raffelt, Max-Planck-Institut für Physik, München Totsuka Memorial Symposium, 9 June 2009, Tokyo Looking forward Looking forward to the next galactic supernova May take a long time No problem Lots of theoretical work to do!

42 Georg Raffelt, Max-Planck-Institut für Physik, München Totsuka Memorial Symposium, 9 June 2009, TokyoTotsuka Lots of theoretical work to do! experimental

43 Georg Raffelt, Max-Planck-Institut für Physik, München Totsuka Memorial Symposium, 9 June 2009, TokyoTotsuka


Download ppt "Georg Raffelt, Max-Planck-Institut für Physik, München Totsuka Memorial Symposium, 9 June 2009, Tokyo Supernova Neutrinos Georg Raffelt, Max-Planck-Institut."

Similar presentations


Ads by Google