Presentation is loading. Please wait.

Presentation is loading. Please wait.

Computer Organization and Design Building a Computer!

Similar presentations


Presentation on theme: "Computer Organization and Design Building a Computer!"— Presentation transcript:

1 Computer Organization and Design Building a Computer!
Montek Singh Wed, April 20, 2011 Lecture 15

2 Building a Computer THIS IS IT! We are now ready to build a computer.
The ingredients are all in place, so let’s put them together… I wonder where this goes? ALU A B MIPS Kit Instruction Memory A D 1

3 Review: The MIPS ISA OP 6 5 16 26 The MIPS instruction set as seen from a Hardware Perspective 000000 rs rt rd func shamt R-type: ALU with Register operands Reg[rd]  Reg[rs] op Reg[rt] 001XXX rs rt immediate I-type: ALU with constant operand Reg[rt]  Reg[rs] op SEXT(immediate) Instruction classes distinguished by types: 3-operand ALU ALU w/immediate Loads/Stores Branches Jumps 10X011 rs rt immediate I-type: Load and Store Reg[rt]  Mem[Reg[rs] + SEXT(immediate)] Mem[Reg[rs] + SEXT(immediate)]  Reg[rt] 10X011 immediate rs rt I-type: Branch Instructions if (Reg[rs] == Reg[rt]) PC  PC *SEXT(immediate) if (Reg[rs] != Reg[rt]) PC  PC *SEXT(immediate) 00001X 26-bit constant J-type: jump PC  (PC & 0xf ) | 4*(immediate)

4 Design Approach “Incremental Featurism”
We’ll implement circuits for each type of instruction individually, and merge them (using MUXes, etc). Steps: 1. 3-Operand ALU instrs 2. ALU w/immediate instrs 2. Loads & Stores 3. Jumps & Branches 4. Exceptions Our Bag of Components: Registers 1 Muxes ALU A B ALU & adders + Data Memory WD A RD R/W Register File (3-port) RA1 RA2 WA WE RD1 RD2 Instruction D Memories

5 A Few ALU Tweaks Let’s review the ALU that we built a few lectures ago. (With a few minor additions) A B 5-bit ALUFN Sub Bool Shft Math OP 0 XX A+B 1 XX A-B X X X X X B<<A X B>>A X B>>>A X A & B X A | B X A ^ B X A | B Add/Sub Bidirectional Barrel Shifter Boolean Sub Bool Shft Math Flags V,C N Flag R Z Flag

6 Instruction Fetch/Decode
Use a counter to FETCH the next instruction: PROGRAM COUNTER (PC) use PC as memory address add 4 to PC, load new value at end of cycle fetch instruction from memory use some instruction fields directly (register numbers, 16-bit constant) use bits <31:26> and <5:0> to generate controls PC 00 A Instruction 32 Memory +4 D 32 32 INSTRUCTION WORD FIELDS OP[31:26], FUNC[5:0] Control Logic CONTROL SIGNALS

7 3-Operand ALU Data Path rs rt rd
000000 rs rt rd 100XXX 00000 R-type: ALU with Register operands Reg[rd]  Reg[rs] op Reg[rt] PC 00 Instruction Memory A D +4 Rs: <25:21> Rt: <20:16> RA1 Register RA2 Rd: <15:11> WA File WD RD1 RD2 WE WERF 32 32 Control Logic A B ALU ALUFN WERF! ALUFN WERF 32

8 Shift Instructions rs rt rd
000000 rs rt rd 000XXX shamt R-type: ALU with Register operands sll: Reg[rd]  Reg[rt] (shift) shamt sllv: Reg[rd]  Reg[rt] (shift) Reg[rs] PC 00 Instruction Memory A D +4 Rt: <20:16> Rs: <25:21> RA1 Register RA2 Rd: <15:11> WA File WD RD1 RD2 WE WERF shamt:<10:6> Control Logic 1 ASEL A B ALU ALUFN ASEL! ALUFN WERF ASEL 32

9 ALU with Immediate rs rt I-type: ALU with constant operand
001XXX rs rt immediate I-type: ALU with constant operand Reg[rt]  Reg[rs] op SEXT(immediate) PC 00 Instruction Memory A D +4 Rs: <25:21> Rt: <20:16> BSEL Rd:<15:11> Rt:<20:16> 1 RA1 Register RA2 WA WA File WD RD1 RD2 WE WERF ASEL 1 shamt:<10:6> imm: <15:0> SEXT SEXT 1 BSEL Control Logic How do you build SEXT? SEXT A B ALU BSEL! BSEL ALUFN ALUFN WERF ASEL

10 Load Instruction rs rt 100011 I-type: Load
immediate I-type: Load Reg[rt]  Mem[Reg[rs] + SEXT(immediate)] PC 00 Instruction Memory A D +4 Rs: <25:21> Rt: <20:16> BSEL Rd:<15:11> Rt:<20:16> 1 RA1 Register RA2 WA WA File WD RD1 RD2 WE WERF ASEL 1 shamt:<10:6> Imm: <15:0> SEXT SEXT Control Logic 1 BSEL SEXT A B BSEL ALU WD R/W Wr ALUFN WDSEL ALUFN Data Memory Wr 32 Adr RD WERF ASEL 32 WDSEL

11 Store Instruction rs rt I-type: Store
10X011 immediate I-type: Store Mem[Reg[rs] + SEXT(immediate)]  Reg[rt] PC 00 Instruction Memory A D +4 Rs: <25:21> Rt: <20:16> BSEL Rd:<15:11> Rt:<20:16> 1 RA1 Register RA2 WA WA File WD RD1 RD2 WE WERF ASEL 1 SEXT BSEL shamt:<10:6> Imm: <15:0> Control Logic 32 No WERF! SEXT A B BSEL ALU Data Memory RD WD R/W Adr Wr ALUFN WDSEL ALUFN Wr WERF ASEL WDSEL

12 PC<31:29>:J<25:0>:00
JMP Instructions PC<31:29>:J<25:0>:00 00001X 26-bit constant J-type: j: PC  (PC & 0xf ) | 4*(immediate) jal: PC  (PC & 0xf ) | 4*(immediate); Reg[31]  PC + 4 PCSEL 6 5 4 3 2 1 PC 00 Instruction Memory A D +4 Rs: <25:21> Rt: <20:16> WASEL J:<25:0> Rd:<15:11> 1 2 Rt:<20:16> RA1 Register RA2 31 WA WA File WD RD1 RD2 WE WERF ASEL 1 SEXT BSEL shamt:<10:6> Imm: <15:0> Control Logic PCSEL WASEL SEXT A B BSEL ALU Data Memory RD WD R/W Adr Wr ALUFN WDSEL ALUFN Wr WERF ASEL PC+4 32 WDSEL

13 PC<31:29>:J<25:0>:00
BEQ/BNE Instructions PC<31:29>:J<25:0>:00 rs rt BT 10X011 immediate PCSEL 1 2 3 4 5 6 R-type: Branch Instructions if (Reg[rs] == Reg[rt]) PC  PC *SEXT(immediate) if (Reg[rs] != Reg[rt]) PC  PC *SEXT(immediate) PC 00 Instruction Memory A D That “x4” unit is trivial. I’ll just wire the input shifted over 2–bit positions. +4 Rs: <25:21> Rt: <20:16> WASEL Rd:<15:11> Rt:<20:16> 31 J:<25:0> 1 2 RA1 Register RA2 WA WA File WD RD1 RD2 WE WERF ASEL 1 SEXT BSEL shamt:<10:6> Imm: <15:0> Z x4 Why add, another adder? Couldn’t we reuse the one in the ALU? Nope, it needs to do a subtraction. Control Logic + PCSEL WASEL BT SEXT A B BSEL ALU Data Memory RD WD R/W Adr Wr ALUFN WDSEL ALUFN Wr Z WERF ASEL PC+4 32 WDSEL

14 Jump Indirect Instructions
PC<31:29>:J<25:0>:00 000000 rs rt rd 00100X 00000 JT BT PCSEL 1 2 3 4 5 6 R-type: Jump Indirect, Jump and Link Indirect jr: PC  Reg[rs] jalr: PC  Reg[rs], Reg[rd]  PC + 4 PC 00 Instruction Memory A D +4 Rs: <25:21> Rt: <20:16> WASEL Rd:<15:11> Rt:<20:16> 31 J:<25:0> 1 2 RA1 Register RA2 WA WA File WD RD1 RD2 WE WERF ASEL 1 SEXT BSEL shamt:<10:6> Imm: <15:0> JT Z BT + x4 Control Logic PCSEL WASEL SEXT A B BSEL ALU Data Memory RD WD R/W Adr Wr ALUFN WDSEL ALUFN Wr Z WERF ASEL PC+4 32 WDSEL

15 PC<31:29>:J<25:0>:00
Loose Ends rs rt 001XXX immediate PC<31:29>:J<25:0>:00 JT BT I-type: set on less than & set on less than unsigned immediate slti: if (Reg[rs] < SEXT(imm)) Reg[rt]  1; else Reg[rt]  0 sltiu: if (Reg[rs] < SEXT(imm)) Reg[rt]  1; else Reg[rt]  0 PCSEL 1 2 3 4 5 6 PC 00 Instruction Memory A D +4 Rs: <25:21> Rt: <20:16> Reminder: To evaluate (A < B) we first compute A-B and look at the flags. LT = N  V LTU = C WASEL 31 1 2 J:<25:0> Rd:<15:11> Rt:<20:16> RA1 Register RA2 WA WA File WD RD1 RD2 WE WERF ASEL 1 SEXT BSEL shamt:<10:6> Imm: <15:0> Z N JT V C BT + x4 Control Logic PCSEL WASEL SEXT A B BSEL ALU Data Memory RD WD R/W Adr Wr ALUFN WDSEL ALUFN Wr N V C Z WERF ASEL PC+4 32 WDSEL

16 PC<31:29>:J<25:0>:00
More Loose Ends 000000 rs rt rd 10101X 00000 PC<31:29>:J<25:0>:00 JT BT R-type: set on less than & set on less than unsigned slt: if (Reg[rs] < Reg[rt]) Reg[rd]  1; else Reg[rd]  0 sltu: if (Reg[rs] < Reg[rt]) Reg[rd]  1; else Reg[rd]  0 PCSEL 1 2 3 4 5 6 PC 00 Instruction Memory A D +4 Rs: <25:21> Rt: <20:16> WASEL 31 1 2 J:<25:0> Rd:<15:11> Rt:<20:16> RA1 Register RA2 WA WA File WD RD1 RD2 WE WERF ASEL 1 SEXT BSEL shamt:<10:6> Imm: <15:0> JT Z N V C BT + x4 Control Logic PCSEL WASEL SEXT A B BSEL ALU Data Memory RD WD R/W Adr Wr ALUFN WDSEL ALUFN Wr N V C Z WERF ASEL PC+4 32 WDSEL

17 PC<31:29>:J<25:0>:00
LUI rt PC<31:29>:J<25:0>:00 001XXX 00000 immediate JT BT I-type: Load upper immediate lui: Reg[rt]  Immediate << 16 PCSEL 1 2 3 4 5 6 PC 00 Instruction Memory A D +4 Rs: <25:21> Rt: <20:16> WASEL 31 1 2 J:<25:0> Rd:<15:11> Rt:<20:16> RA1 Register RA2 WA WA File WD RD1 RD2 WE WERF Imm: <15:0> SEXT N JT SEXT Z V C BT + x4 shamt:<10:6> Control Logic “16” 1 2 ASEL 1 BSEL PCSEL WASEL SEXT A B BSEL ALU Data Memory RD WD R/W Adr Wr ALUFN WDSEL ALUFN Wr N V C Z WERF ASEL PC+4 32 WDSEL

18 Reset, Interrupts, and Exceptions
Upon reset/reboot: Need to set PC to where boot code resides in memory Interrupts/Exceptions: any event that causes interruption in program flow FAULTS: e.g., nonexistent opcode, divide-by-zero TRAPS & system calls: e.g., read-a-character I/O events: e.g., key pressed How to handle? interrupt current running program invoke exception handler return to program to continue execution.

19 PC<31:29>:J<25:0>:00
Exceptions 0x 0x PC<31:29>:J<25:0>:00 Reset: PC  0x 0x JT BT Bad Opcode: Reg[27]  PC+4; PC  0x PCSEL 1 2 3 4 5 6 IRQ: Reg[27]  PC+4; PC  0x PC 00 Instruction Memory A D +4 Rs: <25:21> Rt: <20:16> WASEL Rd:<15:11> Rt:<20:16> 1 2 3 31 27 J:<25:0> RA1 Register RA2 WA WA File WD RD1 RD2 WE WERF Imm: <15:0> RESET SEXT N JT SEXT IRQ Z V C BT + x4 ASEL 2 shamt:<10:6> “16” 1 Control Logic 1 BSEL PCSEL WASEL SEXT A B BSEL ALU Data Memory RD WD R/W Adr Wr ALUFN WDSEL ALUFN Wr N V C Z WERF ASEL LSEL PC+4 32 WDSEL

20 MIPS: Our Final Version
WA PC +4 Instruction Memory A D Register File RA1 RA2 RD1 RD2 ALU B WD WE ALUFN Control Logic Data Memory RD R/W Adr Wr WDSEL BSEL J:<25:0> PCSEL WERF 00 PC+4 Rt: <20:16> Imm: <15:0> ASEL SEXT Z BT WASEL PC<31:29>:J<25:0>:00 JT N V C Rs: <25:21> 2 1 shamt:<10:6> 3 4 5 6 “16” IRQ 0x 0x 0x RESET This is a complete 32-bit processor. Although designed in “one” class lecture, it executes the majority of the MIPS R2000 instruction set. Executes one instruction per clock All that’s left is the control logic design WASEL Rd:<15:11> Rt:<20:16> 1 2 3 31 27 BT + x4

21 MIPS Control The control unit can be built as a large ROM X 1 4 00 6 3
Instruction R E S T I Q Z N V C P L S E X T WA S E L W D S E L ALUFN Sub Bool Shft Math W R W E R F A BS X 1 4 00 6 3 add sll andi lw sw beq


Download ppt "Computer Organization and Design Building a Computer!"

Similar presentations


Ads by Google