Detector Module Three 36-fold segmented detectors 111 preamplifiers Cryostat Jürgen Eberth University of Cologne Detector Team: Dirk Weißhaar Preampl.

Slides:



Advertisements
Similar presentations
Călin A. Ur* for the AGATA Collaboration INFN – Sezione di Padova
Advertisements

Detector Characterisation Group
Advanced GAmma Tracking Array
O Signal formation for energy, time and position measurements o Segmented detectors; - advanced FEE for Ge Detectors o Briefly, some specific issues and.
Alberto Pullia INFN - Milano University of Milano Department of Physics 12th AGATA Week June 11-13, 2012, GSI, Germany June 13, 2012 Status of the AGATA.
AGATA Introduction John Simpson Nuclear Physics Group.
Purpose: Integration of AGATA detectors in triple modules Acceptation tests of triplets (energy resolution, crosstalk,…) Complementing the scanning table.
Results on Test Cryostats and The AGATA Asym. Triple: Status of Cryostat Production AGATA Detector Group Meeting, IKP Cologne March 16th, 2006.
First complete test measurements of the AGATA Core _ Pulser Assembly. AGATA Core Pulser, Segments Bulk Capacitances (First measurements of the Pulser Core.
Coupling an array of Neutron detectors with AGATA The phases of AGATA The AGATA GTS and data acquisition.
The AGATA project concept of  - ray tracking design and development Witek Męczyński The Henryk Niewodniczański Institute of Nuclear Physics Polish Academy.
University of Milano Department of Physics and INFN HIGH DYNAMIC RANGE LOW-NOISE PREAMPLIFICATION OF NUCLEAR SIGNALS A. Pullia, F. Zocca, C. Boiano, R.
AGATA Core - upgraded front end electronics
RSH Front End Electronic R. Beaujean, S. Böttcher Kiel Nov 07, 2005.
GERDA Phase I: Status GERDA FE Phase II meeting
WP1: Detector Assembly Liverpool Tasks:  Detector specification measurement Assembly of components in progress  Detector assembly for scanning Work in.
AGATA: Advanced Gamma Tracking Array
AGATA 2 nd Prototype Detector Initial Measurements & Evaluation Andrew Boston, Matthew Dimmock, Laura Nelson, Sarah Rigby.
Characterisation & PSA Team Meeting Presentations –Liverpool Status, Andy Boston/Matt Dimmock (Liverpool) –Crosstalk properties of AGATA detectors, Bart.
Tubingen, 9 November 2005C.Cattadori INFN Milano & LNGS GERDA meeting TG3 Status Report On behalf of TG3 working group.
Wednesday, May 9 th 2007Torsten Beck Fast Pulse Shape Analysis for AGATA-Germanium- Detectors Torsten BeckWednesday, 9. Mai 2007 Student seminar Wednesday,
John Simpson Nuclear Physics Group Daresbury Laboratory The AGATA project NUSTAR ’05 University of Surrey January 2005.
AGATA Pre-processing team report AGATA Week, July 2008.
Detectors and Preamplifiers Detector deliveries Customer Acceptance Tests Available detectors AGATA triple detectors Scanning program P. Reiter IKP University.
LNGS, 3-4 february 2005C.Cattadori GERDA meeting - TG3 report TG3: Diode Read-out and signal processing C. Cattadori on behalf of the working group.
Wolfram KORTEN, JRA-02 AGATA Irfu AGATA week, Orsay (France), January 15-18, 2007 AGATA within EURONS Objectives: Development, construction, commissioning.
Wolfram KORTEN, JRA-02 AGATAEURONS PCC-Meeting, Mainz (Germany), April 2006 Status of the AGATA project Recent developments Milestones and deliverables.
On the origin of Differential Crosstalk in segmented detectors B. Bruyneel for the AGATA week, Uppsala, Sweden July 2008.
AGATA The Advanced Gamma Ray Tracking Array Ancillary Detector and Integration W.G. Status of the Working Group and Tasks A.Gadea.
AGATA AGATA Advanced Gamma-Ray Tracking Array Next-generation spectrometer based on  -ray tracking Radioactive and stable beams, high recoil velocities.
1 Geant4 Simulation :MCP PET 4’’(102mm) Scintillator ( LSO) 4’’(102mm) 10mm Glass( Borosilicate) PhotocathodeI(Carbon) Space(Vacuum) MCP(Alumina) Space(Vacumm)
AGATA Week Introduction John Simpson Nuclear Physics Group GSI, February 2005.
Experiment TGV II Multi-detector HPGe telescopic spectrometer for the study of double beta processes of 106 Cd and 48 Ca For TGV collaboration: JINR Dubna,
Lund Lund York Cologne Calorimeter present status test results with Thanks to Andreas Wendt !!
Development of a Segmented Planar Germanium Imaging Detector
Status of integrated preamplifiers for GERDA GERDA meeting – MPI Heidelberg, Feb 20-22, 2006 F. Zocca, A. Pullia, S.Riboldi, C. Cattadori.
Gain stability and the LYSO beam radiation monitor measurements
Alberto Pullia INFN - Milano University of Milano Department of Physics 14th AGATA Week January 22-24, 2014, Madrid, Spain January 23, 2014 Status of the.
Data Analysis Working Group AGATA Tasks of the WG Schedule Johan Nyberg, ADAWG meeting, June 12-13, 2003, NBI.
 Number of signals used  Type of signals  Tests with regular and irregular grids  Last results  New idea for minimization function Roberto Venturelli.
PSA: ADAPTIVE GRID SEARCH The Method Experimental Results Optimization aspects Roberto Venturelli (INFN Padova - IPSIA “Giorgi” Verona) SACLAY, 05-may-06.
AGATA Detector Meeting March 16th, 2006, Cologne Detector Acceptance Tests: delivered: three symmetric detectors S001 properties excellent S002 properties.
Ultra-fast differential front-end electronics
Front End Electronics (FEE) solutions for large arrays of segmented detectors FEE for large array with segmented HP-Ge detectors - Specific case: combined.
Recent progress in ultra-low noise, ultra-low background detectors V. Marian, M.O. Lampert, B. Pirard, P. Quirin CANBERRA France (Lingolsheim) Workshop.
Analog Front End For outer Layers of SVT (L.4 & L.5) Team:Luca BombelliPost Doc. Bayan NasriPh.D. Student Paolo TrigilioMaster student Carlo FioriniProfessor.
Test of 1kg point contact detector and CDEX-1 Data Analysis Process Wu Yucheng CDEX collaboration Development of High Purity Germanium Detector.
Advanced Gamma Tracking Array Andy Boston The Advanced Gamma Tracking Array
Wolfram KORTEN DAPNIA/SPhN AGATA “Gamma-ray tracking” AGATA “Gamma-ray tracking” A novel technique for building high-resolution Ge spectrometers.
Tuesday, 20 May 2003OPERA Collaboration Meeting - Gran Sasso1 Status of front-end electronics for the OPERA Target Tracker LAL Orsay S.BONDIL, J. BOUCROT,
AGATA; status, plans and opportunities
Status of front-end electronics for the OPERA Target Tracker
The SuperB EMC Front End electronics Prototypes
1st PSeGe Workshop, IPNO & CSNSM Orsay 3rd -4th October 2016
A General Purpose Charge Readout Chip for TPC Applications
Detector characterization overview of the AGATA scanning tables
Efficiency versus energy resolution
Detectors and Preamplifiers
HPD with external readout
AGATA Detector Work Performed at Saclay in lessons learned -
Status of the AGATA installation at GANIL
CAT of AGATA detectors &
Status of n-XYTER read-out chain at GSI
AGATA week Uppsala, July 2008
Status of the CARIOCA project
Status report Detector team
MCP PET Simulation (7) – Pixelated X-tal
LSO: Energy resolution
Efficiency versus energy resolution
Status Report on MCP PET Simulation
Presentation transcript:

Detector Module Three 36-fold segmented detectors 111 preamplifiers Cryostat Jürgen Eberth University of Cologne Detector Team: Dirk Weißhaar Preampl. Team: Alberto Pullia Status Report 2/2005

The 36-fold segmented, encapsulated detector symmetric detectors: No. Delivered accepted 1 May 04 July 04 2 May 04 July 04 3 Dec 04 Feb 05

Detector Acceptance Test at IKP Cologne Dedicated cryostat: Internal layout as in triple cryostat (optimised for minimum crosstalk), cold FET‘s, low power (23 mW/FET) Heko preamp, single ended output Measured: Energy resol. at 60, 1333 keV Cross talk from coincidences, Efficiency

Segment specifications Guaranteed FWHMat 1.3MeV: <2.30keV, mean < 2.1keV at 60keV: <1.35keV, mean < 1.15keV Expected FWHM at 1.3MeV: mean < 2.05keV at 60keV: <1.00keV FWHM at 1.3MeV FWHM at 60keV Mean(1.3MeV)=1.99keV Mean(60keV)=1.14keV Core specification Guaranteed at 1.3MeV: 2.35keV at 122keV: 1.35keV Core FWHM: at 1.3MeV : 2.10keV at 122keV : 1.20keV IKP Cologne 001

Segment specifications Guaranteed FWHMat 1.3MeV: <2.30keV, mean < 2.1keV at 60keV: <1.35keV, mean < 1.15keV Expected FWHM at 1.3MeV: mean < 2.05keV at 60keV: <1.00keV FWHM at 1.3MeV FWHM at 60keV Mean(1.3MeV)=1.98keV Mean(60keV)=1.07keV Core specification Guaranteed at 1.3MeV: 2.35keV at 122keV: 1.35keV Core FWHM: at 1.3MeV : 2.08keV at 122keV : 1.19keV GSI 002

Segment specifications Guaranteed FWHMat 1.3MeV: <2.30keV, mean < 2.1keV at 60keV: <1.35keV, mean < 1.15keV Expected FWHM at 1.3MeV: mean < 2.05keV at 60keV: <1.00keV FWHM at 1.3MeV FWHM at 60keV Mean(1.3MeV)=2.01keV Mean(60keV)=1.03keV Core specification Guaranteed at 1.3MeV: 2.35keV at 122keV: 1.35keV Core FWHM: at 1.3MeV : 2.13keV at 122keV : 1.10keV INFN Padova 003

„Crosstalk“ between the segments 0.6 keV 1.5keV Crosstalk < 10 -3

Detector 1 Detector 2 Detector 3 Crosstalk < 10 for all three detectors -3

AGATA test cryostat for single detectors

AGATA test cryostat for individual detectors 1 cryostat available (used to characterise detector 001 at Liverpool) 1 ordered (Italy) 1 to be ordered (France) Task: Characterisation of individual detectors in different labs Specifications: Detector temp. 90 K Dewar volume 3 ltr LN holding time 20h pow. 26h unp. AGATA preamps diff. output 2

CSPs for the first AGATA_Detector Segments Test SpecificationIN2P3_Ganil FR4 substrate (FET_ BF862 ) INFN-Milan Alumina substr. (FET_BF 862) IKP-Cologne (Miniball He_Ko) (FET_BF862) Sensitivity ( mV / MeV ) ~ 100 mV/MeV ( differential ) ~ 100 mV/MeV ( differential ) ~ 175 mV/MeV (single ended ) Resolution (Cd= 0pF; cold FET) ~ 600 eV~ 600 eV (*)~ 600 eV Slope ( + eV/ pF [Cd] ) < 10 eV / pF ( cold FET ) < 10 eV / pF ( warm FET *) ! < 10 eV / pF ( cold FET ) Rise time (Cd= 0pF; cold FET) ~ 20 ns (*) ( warm FET) ! ~ 9 ns (*) ( warm FET) ! ~ 15 ns ( cold FET) Slope ( + ns/ pF [Cd]) ~ 0.6 ns ( ~30 ns / 15 pF ) ~ 0.25 ns ( ~ 13.5 ns / 23 pF ) ~ 0.3 ns ( ~ 26 ns / 33 pF ) U (out)/(50 Ohm) / Power (mW) ~ 1.5V / ~ 290 mW ( +/- 6V & +/-12V ) ~ 1.5 V / ~290 mW ( +/- 6V & +/-12V ) ~ 4.5V / ~ 450 mW ( + /- 12V ) Open Loop Gain (calc.) ~ 10,000> 100,000 ~ 20,000

SpecificationIKP-Cologne (a) (FET_BF862) IKP-Cologne (b) (FET_IF1320) IKP-Cologne (Miniball) (FET_IF1320) Sensitivity ( mV / MeV ) ~ 100 mV/MeV ( differential ) ~ 100 mV/MeV ( differential ) ~ 175 mV/MeV ( single ended ) Resolution (Cd= 0pF; cold FET) ~ 600 eV Slope ( + eV/ pF [Cd] ) < 10 eV / pF ( cold FET ) 10 eV / pF ( cold FET ) < 10 eV / pF ( cold FET ) Rise time (Cd= 0pF; cold FET) ~ 10 ns ( cold FET) ~ 15 ns ( cold FET) ~ 15 ns ( cold FET) Slope ( + ns/ pF [Cd]) ~ 0.25 ns ( ~ 18 ns / 33 pF ) ~ 0.3 ns ( ~ 26 ns / 33 pF ) ~ 0.3 ns ( ~ 26 ns / 33 pF ) U (out)/(100 Ohm) / Power (mW) ~ 2.0V /~ 290 mW ~ 4.5V /~ 450 mW ( + /- 12V ) Charge Sensitive Stage Saturation equiv. 20 MeV equiv. 100 MeV Open Loop Gain (calc.) > 100,000~ 20,000 CSPs for the first AGATA_Detector Core Test

AGATA Core Pulser

AGATA CORE & PULSER Am 241 ~ 1.25 keV Pulser ~ 1.25 keV

AGATA CORE & PULSER Co 60 ~ 2.15/2.26keV Pulser ~ 1.28 keV

AGATA symmetric triple cryostat 111 preamps with cold FET‘s, differential output Separate cooling for detectors and FET‘s Readout through 3M-RDM26 video cables Specifications: Detector temp. 90 K Dewar volume 4.5 ltr Holding time 18h pow. 30h unp. LN level readout Weight 45 kg 2

AGATA symmetric triple Cryostat

Done in 2004/05: Detectors: Three detectors tested in Cologne, Energy resolution very good, well within specs Crosstalk < 0.1 % Preamplifiers: Development of segment preamps (PACAGA5A- GANIL and PB-B1-Milano) and of core preamp COREKöln almost finished Cryostats: Cologne test cryostat (HeKo preamps) AGATA test cryostat (GANIL preamps) with detector 001 moved to Liverpool for scanning Symmetric Triple Cryostat

Next Steps: March/April 2005: Test of the different preamps for core and segments with detectors in the triple cryostat April/May 2005: Final assembly of symmetric triple detector module June/July 2005: Performance measurements of the symmetric detector module with radioactive sources and in-beam using MINIBALL XIA electronics Fall 2005: Transfer of the three detectors to individual test cryostats for detector characterisation and performance tests of new electronics November 2005: Delivery of the first asymmetric capsule June 2006: First asymmetric detector module