Detectors for VEPP-2000 B.Khazin Budker Institute of Nuclear Physics 2 March 2006.

Slides:



Advertisements
Similar presentations
TIME 2005: TPC for the ILC 6 th Oct 2005 Matthias Enno Janssen, DESY 1 A Time Projection Chamber for the International Linear Collider R&D Studies Matthias.
Advertisements

CBM Calorimeter System CBM collaboration meeting, October 2008 I.Korolko(ITEP, Moscow)
The Lightweight Straw Tube Tracker for PANDA Detector at GSI Andrey Sokolov *,1, James Ritman 1, Peter Wintz 1, Paola Gianotti 2, Dario Orecchini 2 1 Institut.
HEP Experiments Detectors and their Technologies Sascha Marc Schmeling CERN.
The CMS Detector Paoti Chang National Taiwan University
Guoming CHEN The Capability of CMS Detector Chen Guoming IHEP, CAS , Beijing.
Salvatore Fiore University of Rome La Sapienza & INFN Roma1 for the KLOE collaboration LNF Spring School “Bruno Touscheck”, Frascati, May 2006 CP/CPT.
D. Peterson, Muon Spectrometers at ATLAS and CMS, presentation to LEPP 19-Nov  spectrometers at ATLAS and CMS Our charge: Survivability Resolution.
Glasgow, October 25, 2007 Results on e+e- annihilation from CMD2 and SND G.V.Fedotovich and S.I.Eidelman Budker Institute of Nuclear Physics Novosibirsk.
High Energy Detection. High Energy Spectrum High energy EM radiation:  (nm)E (eV) Soft x-rays X-rays K Soft gamma rays M Hard gamma.
880.P20 Winter 2006 Richard Kass 1 Energy Measurement (Calorimetry) Why measure energy ? I) Not always practical to measure momentum. An important contribution.
APS Meeting April 5-8, 2003 at Philadelphia Chunhui Luo 1 Chunhui Luo Inclusive J/ψ Production at DØ.
CMD-2 and SND results on the  and  International Workshop «e+e- Collisions from  to  » February 27 – March 2, 2006, BINP, Novosibirsk, Russia.
The Design of a Detector for the Electron Relativistic Heavy Ion Collider Anders Ingo Kirleis 1, William Foreman 1, Elke-Caroline Aschenauer 2, and Matthew.
The GlueX Detector 5/29/091CIPANP The GlueX Detector -- David Lawrence (JLab) David Lawrence (JLab) Electron beam accelerator continuous-wave (1497MHz,
ELECTROMAGNETIC CALORIMETER at CMS EVANGELOS XAXIRIS June 2005 Experimental Physics Techniques.
Low energy e + e –  hadrons in Novosibirsk I.Logashenko On behalf of the CMD-2 and SND Collaborations Budker Institure of Nuclear Physics (Novosibirsk,
Setup for hypernuclear gamma-ray spectroscopy at J-PARC K.Shirotori Tohoku Univ. Japan for the Hyperball-J collaboration J-PARC E13 hypernuclear  -ray.
Scintillation hodoscope with SiPM readout for the CLAS detector S. Stepanyan (JLAB) IEEE conference, Dresden, October 21, 2008.
Muon Detector Jiawen ZHANG Introduction The Detector Choices Simulation The structure and detector design The Expected performance Schedule.
International Workshop on Linear Colliders, Geneve Muon reconstruction and identification in the ILD detector N. D’Ascenzo, V.Saveliev.
Experimental Particle Physics PHYS6011 Joel Goldstein, RAL 1.Introduction & Accelerators 2.Particle Interactions and Detectors (2/2) 3.Collider Experiments.
The ZEUS Hadron-Electron-Separator Performance and Experience Peter Göttlicher (DESY) for the ZEUS-HES-group Contributions to HES Germany, Israel, Japan,
18/11/04DELPHI visits, PhC1 Visits to DELPHI/LHCb Ph.Charpentier.
BES-III Workshop Oct.2001,Beijing The BESIII Luminosity Monitor High Energy Physics Group Dept. of Modern Physics,USTC P.O.Box 4 Hefei,
Luca Spogli Università Roma Tre & INFN Roma Tre
ECAL PID1 Particle identification in ECAL Yuri Kharlov, Alexander Artamonov IHEP, Protvino CBM collaboration meeting
16 June, 2015 В.И. Тельнов 1 Two-photon experiments with detector MD1 at VEPP-4 Valery Telnov Budker INP and Novosibirsk St. Univ. PHOTON 2015, June 16,
The Compact Muon Solenoid. What does CMS do? The Compact Muon Solenoid is a general purpose particle detector installed at point 5 of the Large Hadron.
Muon/Special Detector Studies Update St. Malo Muon ID - Single muons, single pion rejection. TESLA TDR (M. Piccolo) 2. Muon ID events:  ID efficiency,
Magnetized hadronic calorimeter and muon veto for the K +   +  experiment L. DiLella, May 25, 2004 Purpose:  Provide pion – muon separation (muon veto)
MAMUD Magnetized hadronic calorimeter and muon veto for the K +   +  experiment L. DiLella, March 29, 2005 Purpose:  Provide pion – muon separation.
First CMS Results with LHC Beam
Performance of Shower Maximum Detectors Saori Itoh (Shinshu Univ.) GLC calorimeter group (KEK,Kobe,Konan,Niigata,Shinshu,Tsukuba) Introduction Detector.
J-PARC でのハイパー核ガンマ線分光実験用 散乱粒子磁気スペクトロメータ検出器の準備 状況 東北大理, 岐阜大教 A, KEK B 白鳥昂太郎, 田村裕和, 鵜養美冬 A, 石元茂 B, 大谷友和, 小池武志, 佐藤美沙子, 千賀信幸, 細見健二, 馬越, 三輪浩司, 山本剛史, 他 Hyperball-J.
CGEM-IT project and beam test program G. Felici for the FE-LNF-TO team Partially supported by the Italian Ministry of Foreign Affairs under the Program.
Febr.28-March 2, 2006N Nbar project at VEPP The project to measure the nucleon form factors at VEPP-2000 Workshop - e+e- collisions from phi to psi,
Forward Tagger Simulations Implementation in GEMC Moller Shield Tracking Studies R. De Vita INFN –Genova Forward Tagger Meeting, CLAS12 Workshop, June.
First results from CMD-3 detector at VEPP-2000 collider Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia September 2011 E.Solodov (for.
First results from SND at VEPP-2000 S. Serednyakov On behalf of SND group VIII International Workshop on e + e - Collisions from Phi to Psi, PHIPSI11,
2005/07/12 (Tue)8th ACFA Full simulator study of muon detector and calorimeter 8th ACFA Workshop at Daegu, Korea 2005/07/12 (Tue) Hiroaki.
JINR, Dubna 5-9 December, 2011 Current status of luminosity measurements with the CMD-3 detector at VEPP-2000 G.V.Fedotovich BINP, Novosibirsk.
Fedotovich G.V. On behalf of CMD-3 collaboration Budker Institute of Nuclear Physics Novosibirsk State University phipsi15, USTC, Hefei, China 23 – 26.
Update on Central Neutron Detector for CLAS12 S. Niccolai, IPN Orsay European collaboration: INFN Frascati, INFN Genova, IPN Orsay, LPSC Grenoble CLAS12.
Tracker Neutron Detector: INFN plans CLAS12 Central Detector Meeting - Saclay 2-3 December 2009 Patrizia Rossi for the INFN groups: Genova, Laboratori.
G. Sullivan – Quarknet, July 2003 Calorimeters in Particle Physics What do they do? –Measure the ENERGY of particles Electromagnetic Energy –Electrons,
FARICH status E.A.Kravchenko Budker INP, Novosibirsk, Russia.
Mashines&Detectors at Budker INP PhoPSi workshop, Beijing
Status of BESIII and upgrade of BESIII
Tracking detectors/2 F.Riggi.
Cross section of the process
CMS muon detectors and muon system performance
Status of the experiments with the CMD-3 detector at VEPP-2000
First results of SND experiment at VEPP-2000
Central detector for CLAS12: CTOF and Neutron detector
an ecofriendly possibility
The Compact Muon Solenoid Detector
Physical Program for VEPP-2000 e+e- Collider
VEPP-2000 plans for the study of the nucleon form factors
Experimental Particle Physics
Preparation of the CLAS12 First Experiment Status and Time-Line
Muon Detector Jiawen ZHANG 16 September 2002.
Project Presentations August 5th, 2004
Status and results of Novosibirsk accelerator complex
Forward-Backward Asymmetry Study in
Experimental Particle Physics
Cluster Counting Drift Chamber as high precision tracker for ILC experiments G.F. Tassielli(1,2) (1) Dipartimento di Fisica dell’Universita’ del Salento,
PHYS 3446 – Lecture #18 Monday ,April 9, 2012 Dr. Brandt Calorimeter
Presentation transcript:

Detectors for VEPP-2000 B.Khazin Budker Institute of Nuclear Physics 2 March 2006

VEPP-2000 CMD-3 SND circumference – 24.4 m revolution time – 82 nsec beam current – 0.2 A beam length – 3.3 cm energy spread – 0.7 MeV  x =  z =6.3 cm L = cm -2 s -1 at 2E=2.0 GeV L = cm -2 s -1 2E=1.0 GeV Total integrated luminosity with all detectors on VEPP-2M ~ 70 pb -1

Detector requirements “Full” solid angle High energy and coordinate resolutions for photons Perfect reconstruction of events with many charged particles K/  /μ separation Antineutron (neutron) identification

1 – VEPP-2000 vacuum chamber, 2 – tracking system, 3 – aerogel counters, 4 – electromagnetic calorimeter NaI(Tl), 5 – vacuum phototriodes, 6 – absorber, 7-9 – muon system, 10 – VEPP-2000 phocusing solenoid Spherical Neutral Detector

Cryogenic Magnetic Detector-3 1 – vacuum chamber 2 – drift chamber 3 – electromagnetic calorimeter BGO 4 – Z – chamber 5 – CMD SC solenoid 6 – electromagnetic calorimeter LXe 7 – electromagnetic calorimeter CsI 8 – yoke 9 – VEPP-2000 solenoid

SND tracking system – - 24 jet cells, 9 drift layers with  ~ 0.2 mm - cathode strips on inner and outer shells with  ~ 0.3 mm - along wires charge division with  ~ 2 mm - MWPC on the outside of drift layers g/cm 2, 0.01 X 0, N,  ~  Tracking system

Carbon fibers with E  N/mm hexagonal cells ( 9 mm side) Sense wires - W-Re with 15 mcm diameter Field wires - gold plated Ti with 100 mcm diameter Gas mixture - Ar/isobutan (80/20) Cosmic event Drift resolution Resolution along wires

Calorimeter NaI(Tl) 1680 NaI(Tl) crystals in 3 spherical layers with vacuum phototriodes as photosensitive devices weight 3.5 tons, thickness 13.5 X 0  = 0.9× 4  1.NaI(Tl) crystals 2.Vacuum phototriodes Energy resolution:Angular reolution: Energy resolution

End cap calorimeter BGO 680 crystals 25×25×150 mm kg, 13.4 X 0  =0.3×4  HAMATSU silicon PIN 1×1 cm 2 Noise energy equivalent  noise = 1.2 MeV (t = 25  C)  noise = 1.0 MeV (t = 12  C) 22.7 MeV Cosmic particles Energy resolution for photons Angular resolution for photons

Calorimeter CsI 1152 crystals 60×60×150 mm X 0 8 octants by 9 rows of 16 crystals HAMAMATSU S B3 1×2 cm 2 Counter (1152) Row (72) Octant (8)

Calorimeter LXe 5.7 X 0 of LXe (400 liters, 1.2 tons) 14 gaps by 10.2 mm 2124 coordinate strips 264 towers anode cathode

Barrel system resolution CsI LXe LXe+CsI 500 MeV photons CMD-2 CMD-3

Calorimeter LXe  K separation Energy depositions in successive gaps for different momentum Pions Kaons 100 MeV/c200 MeV/c300 MeV/c 400 MeV/c500 MeV/c 600 MeV/c 700 MeV/c800 MeV/c900 MeV/c  K K  K  100 MeV/c200 MeV/c300 MeV/c 400 MeV/c 700 MeV/c 600 MeV/c 800 MeV/c 500 MeV/c 900 MeV/c  K  =1.5 %  K  =2.5 %  K  =3.5 %

μ 0 =10ph.e. π K μ 0 =5ph.e. 1,141,12 n Particle ID Aerogel Counters e/ ,  /K separation Aerogel + shifter + PMT Aerogel thickness 31 mm Shifter turned by 5˚ Teflon coverage (R=0.98) Nucl.Instrum.Meth.A315: ,1992 Counter efficiency Prototype with cosmic events

Particle ID: Timing Counter (SCiG) Energy deposition in 5 mm of scintillator m.i.p. Antineutron identification in e + e   n n bar Average number of photoelectrons per PMT ~ 10 Time resolution σ(TOF) ‹ 1 ns

Conclusions New generation of detectors perfectly matches the reach physics potential of VEPP-2000 Both detectors plan to the end of this year be ready to accept first luminosity