Presentation is loading. Please wait.

Presentation is loading. Please wait.

The CMS Detector Paoti Chang National Taiwan University

Similar presentations


Presentation on theme: "The CMS Detector Paoti Chang National Taiwan University"— Presentation transcript:

1 The CMS Detector Paoti Chang National Taiwan University
Workshop on LHC Physics and the Strategies for Discovery Taipei, Taiwan, Jan. 14, 2008 1/14/08 NTU, Taipei The CMS Detector

2 Detector Requirement Good Muon identification;good dimuon mass resolution (~1% at 100 GeV); distinguish charge at 1 TeV. Good momentum resolution for charged tracks. Efficient triggering and off-line tagging on t and b-jets. Good EM energy resolution; good diphoton and dielectron mass resolution; wide geometrical coverage; p0 rejection and efficient photon and lepton isolation Good missing-transverse-energy and dijet mass resolution  high-field solenoid, full-silicon-based inner tracking system and a homogenous scintillating-crystal-based electromagnetic calorimeter 1/14/08, NTU, Taipei The CMS Detector

3 Overview of the CMS Detector
1/14/08, NTU, Taipei The CMS Detector

4 Superconducting Magnet
Special features: 1. Winding composed of four layers 2. Mechanically reinforced with aluminum alloy 3. Large dimension 6.2 m cold bore, 12.5m length,220-t mass 1/14/08, NTU, Taipei The CMS Detector

5 Main parameters CMS decides to use lower field, 3.8T.
1/14/08, NTU, Taipei The CMS Detector

6 CMS Barrel Yoke ready for coil and muon Detector
1/14/08, NTU, Taipei The CMS Detector

7 Inner Tracking System ⇕
Provide precise measurements of track trajectories and secondary vertices. L= 1034 cm-2 s-1  1000 particles from >20 inter. high granularity and fast response of electronics Keeping minimum amount of material 3 layers of pixel to reduce occupancy ( cm) 10 layers of silicon strip detectors (R ~ 1.1 m) endcaps: 2 disk pixel and 3 plus 9 strip on each side 1/14/08, NTU, Taipei The CMS Detector

8 Overview of the tracker layout
Acceptance |h|<2.5, 200 m2 silicon area, 1440 pixel and strip modules. pixel: 100x150 mm2; Inner silicon: 10cm x 80mm; outer silicon: 25cm x 180 mm 1/14/08, NTU, Taipei The CMS Detector

9 Expected Hadron Fluence and Radiation Dose
L = 500 fb-1, 10 years of LHC running Surface damage on readout chips  0.25mm CMOS chip (rad. hard) Increasing leakage current  low temperature -10C to -27C transient phenomena 1/14/08, NTU, Taipei The CMS Detector

10 Pixel Detector barrel support structure Layout overview 
material budget 1/14/08, NTU, Taipei The CMS Detector

11 Barrel Pixel Detector Modules
1/14/08, NTU, Taipei The CMS Detector

12 Forward Pixel Sketches of two types of FPix panels
Half cylinders Sketch of of a plaquette mounted in a panel 1/14/08, NTU, Taipei The CMS Detector

13 Status of Pixels 1/14/08, NTU, Taipei The CMS Detector

14 Overview of Silicon Strip Detector
1/14/08, NTU, Taipei The CMS Detector

15 Silicon sensor 320 mm sensors 500 mm sensors Active region
1/14/08, NTU, Taipei The CMS Detector

16 Silicon Tracker Inner Barrel and Endcap
Exploded views of a module of two sensors Three TIB modules in a shell 1/14/08, NTU, Taipei The CMS Detector

17 Outer Silicon Tracker Each sector consists of 9 front petals and 9 back petals d = 2.3 m Endcap outer silicon strip detectors TOB wheel 1/14/08, NTU, Taipei The CMS Detector

18 Rod an Petal Double sided rod Front and back panels for TEC
1/14/08, NTU, Taipei The CMS Detector

19 Expected Performance Transverse momentum Impact parameter in r
Impact parameter in z 1/14/08, NTU, Taipei The CMS Detector

20 Electromagnetic Calorimeter
The CMS ECAL consists of a hermetic homogenous calorimeter made of 61200 lead tungstate (PbWO4) crystals in the central barrel part, ~7324 crystals in each of the two endcaps, and a preshower detector in front of the endcap crystals. Advantages of PbWO4: 1. high density (8.28 g/cm3); 2. shorter rad. Length (.89 cm) 3. short Moliere radius (2.2 cm); 4. fast radiation decay time (80% of the light in 25 ns)  fine granularity, radiation hardness and compact calor. 1/14/08, NTU, Taipei The CMS Detector

21 CMS-PbWO4 1/14/08, NTU, Taipei The CMS Detector

22 Layout of the CMS ECAL Barrel: |h| < 1.479 360 fold in f
2x85 fold in h crystal size: front: 22x22 mm2 back: 26x26 mm2 length: 230 mm 25.8 X0 Endcap: 1.479< |h| < 3.0 1 unit = 5x5 crystals. crystal size: front: 28.62x28.62mm2 back: 30x30 mm2 length: 220 mm 24.7 X0 1/14/08, NTU, Taipei The CMS Detector

23 ECAL Modules Barrel supermodule (1700 crystals) Module of 200 crystals
1/14/08, NTU, Taipei The CMS Detector

24 ECAL-Barrel 1/14/08, NTU, Taipei The CMS Detector

25 Preshower Detector 1.653<|h|<2.6; total length 20 cm.
Twp parts: lead radiators and silicon strip sensors. Taiwan involvement: NCU: 1/4 silicon sensors NTU: System Motherboards 1/14/08, NTU, Taipei The CMS Detector

26 Calibration and Resolution
channel-to-channel variation: use lab. measurements on light yields and photo-dio. response.  5% in barrel and 10% in endcap Beam test p0/h →gg in data; w →en. Laser Monitor system Energy resolution 1/14/08, NTU, Taipei The CMS Detector

27 Performance of a typical 3x3 crystals
1/14/08, NTU, Taipei The CMS Detector

28 Status of ECAL Endcaps & Preshower
Preshower: testing micro modules, motherboards and preparing to install in April 1/14/08, NTU, Taipei The CMS Detector

29 Longitudinal View of the CMS Det.
HCAL Barrel HCAL Endcap HCAL Forward 1/14/08, NTU, Taipei The CMS Detector

30 HCAL Barrel (HB) The HB consists of two half-barrels, each of which contains 18 wedges. Each wedge corresponds to 4 f sectors. The absorber consists of a 40-mm thick front steel plate, mm-thick brass plates, mm-thick brass plate, and a 75-mm-thick steel back plate. 16 h 5.82 lI at 90 and 10.6 lI at h=1.3 wedge Half barrel 1/14/08, NTU, Taipei The CMS Detector

31 The HCAL Tower Segmentation
Plastic scintillators 1/14/08, NTU, Taipei The CMS Detector

32 Endcap Calorimeter (HE)
Yoke Close to magnet, non-conducting absorber has to be used. C26000 cartridge brass 1/14/08, NTU, Taipei The CMS Detector

33 HCAL Endcaps Scintillator Tray HE Wedges 1/14/08, NTU, Taipei
The CMS Detector

34 Forward Calorimeter Situate at |h| = 5
Detect particles through its Cherenkov light. Require good EM response (electrons). Serve as luminosity monitor Methods: zero counting and average ET per tower 1/14/08, NTU, Taipei The CMS Detector

35 Expected Performance Jet energy resolution 1/14/08, NTU, Taipei
The CMS Detector

36 Muon System Identify muons, measure momentum and trigger muon events.
The muon system consists of three types of gaseous detectors: 1. four layers of drift tubes in |h|<1.2 2. cathode strip chamber covering |h| to 2.4 3. resistive plate chambers 6 layers in barrel and 3 in endcaps ( |h| < 1.6 ) 1/14/08, NTU, Taipei The CMS Detector

37 Layout of Drift Tube Chambers
One layer is inside the yoke, one is outside, and the other two are embedded within the york. One of the five wheels. 60 chambers in the first three layers and 70 in the last. 1/14/08, NTU, Taipei The CMS Detector

38 Sketch of Drift-Tube Cell
Gas: 85% Ar + 15% CO2 Top and bottom plates are grounded. The voltages applied to the electrode are +320V for wires, V for the strips and V for the cathode. 1/14/08, NTU, Taipei The CMS Detector

39 Installation of MB1 on Wheel 2
Each DT chamber is made of 3 (or 2) superlayers, each of which is made of 4 layers of rectangular drift cells. 1/14/08, NTU, Taipei The CMS Detector

40 Quarter view of the CMS Detector
1/14/08, NTU, Taipei The CMS Detector

41 Layout of a CSC & a Schematic View of a Single Gap
HV: kV 7 trapezoidal panels forming a 6 gas gaps. Gas: 40% Ar + 50% CO2 + 10% CF4 1/14/08, NTU, Taipei The CMS Detector

42 Resistive Plate Chamber
Advantage: tagging the ionizing time much shorter than 25ms  good for triggers Gas: 96.2% C2H2F % C2H % SF6 1/14/08, NTU, Taipei The CMS Detector

43 Schematic Layout for Barrel RPC
r-f view 1/14/08, NTU, Taipei The CMS Detector

44 Layout for Endcap RPC 1/14/08, NTU, Taipei The CMS Detector

45 Expected Performance 1/14/08, NTU, Taipei The CMS Detector

46 Status of the Muon System
DT muons: a. Install tower electronics b. Test and commission 2. CSC a. All chambers and electronics are installed B. Do more tests. 1/14/08, NTU, Taipei The CMS Detector

47 Summary After so many year hardwork, majority of the detector and electronics are installed and commissioned. Problems and difficulties are foreseen before collisions. Tight schedule for Endcap ECAL and Preshower. Keep testing and looking forward to LHC physics. 1/14/08, NTU, Taipei The CMS Detector


Download ppt "The CMS Detector Paoti Chang National Taiwan University"

Similar presentations


Ads by Google